首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
A simple and general microwave route is developed to synthesize nanostructured ZnO using Zn(acac)2·H2O (acac = acetylacetonate) as a single source precursor. The reaction time has a great influence on the morphology of the ZnO nanostructures and an interesting spindle‐like nanostructure is obtained. The microstructure and morphology of the synthesized materials are investigated by X‐ray diffraction (XRD), scanning electron microscopy (SEM), field‐emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high‐resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED). It is found that all of them with hexagonal wurtzite phase are of single crystalline structure in nature. Ultraviolet–visible (UV‐vis) absorption spectra of these ZnO nanostructures are investigated and a possible formation mechanism for the spindle‐like ZnO nanostructures is also proposed.  相似文献   

2.
Flower‐like self‐organized crystalline ZnO architectures were obtained through a facile and controlled hydrothermal process. As‐synthesized products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high‐resolution transmission electron microscopy (HRTEM), X‐ray diffraction (XRD), electron diffraction and UV‐Vis spectroscopy. XRD and electron diffraction results confirmed the obtained materials are pure wurtzite ZnO. The effects of different ratios of starting materials and solvent on the morphologies of ZnO hydrothermal products were also evaluated by SEM observations. It is suggested that the use of water, rather than ethanol as the solvent, as well as employing a precursor of Zn(Ac)2 and 2NaOH (v/v) in hydrothermal reactions are responsible for the generation of specific flower‐like self‐assembled ZnO structures. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
TeO2‐core/ZnO‐shell nanorods were synthesized by a two–step process comprising thermal evaporation of Te powders and atomic layer deposition of ZnO. Scanning electron microscopy images exhibit that the core‐shell nanorods are 50 ‐ 150 nm in diameter and up to a few tens of micrometers in length, respectively. Transmission electron microscopy and X‐ray diffraction analysis revealed that the cores and shells of the core‐shell nanorods were polycrystalline simple tetragonal TeO2 and amorphous ZnO with ZnO nanocrystallites locally, respectively. Photoluminescence measurement revealed that the TeO2 nanorods had a weak broad violet band at approximately 430 nm. The emission band was shifted to a yellowish green region (∼540 nm) by encapsulation of the nanorods with a ZnO thin film and the yellowish green emission from the TeO2‐core/ZnO‐shell nanorods was enhanced significantly in intensity by increasing the shell layer thickness. The highest emission was obtained for 125 ALD cycles (ZnO coating layer thickness: ∼15 nm) and its intensity was much higher than that of the emission from the uncapsulated TeO2 nanorods. The origin of the enhancement of the emission by the encapsulation is discussed in detail. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Nanoplates, flower‐like nanostructure of ZnO were successfully synthesized by employing ZnSO4·7H2O, NaOH as the starting materials at 120°C under hydrothermal condition. Keeping the same parameters, ZnO urchin shape was obtained by addition of vitamin C at 190°C. Characterizations were carried out by X‐ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) at room temperature. Selected area electron diffraction (SAED) pattern confirms that the product is single crystalline nature. The possible formation mechanisms for synthesized ZnO nanosturcture with various morphologies have also been proposed. PL spectrum from the ZnO flower‐like structures reveals weak UV emission and strong green emission. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Single‐crystalline Zinc oxide (ZnO) nanorods were firstly synthesized on gold‐coated Si substrate via a simple thermal reduction method from the mixture of ZnO and Al powder. The growth process was carried out in a quartz tube at different temperature (550‐700 °C) and at different oxygen partial pressure. Their structure properties were investigated by X‐ray diffraction (XRD), scanning electron microscope (SEM), X‐ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The length of the as‐prepared ZnO nanorods was up to several micrometers and their diameters were about 130 nm. The X‐ray diffraction patterns, transmission electron microscopic images, and selective area electron diffraction patterns indicate that the one‐dimensional ZnO nanorods are a pure Single‐crystal and preferentially oriented in the [0001] direction. The reaction mechanism of ZnO nanorods was proposed on the basis of experimental data. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
In this paper we report a chemical method named coordination reaction method to synthesize ZnO nanowire arreys. ZnO nanowires with the diameter about 80nm were successfully fabricated in the channels of the porous anodic alumina (PAA) template by the above coordination reaction method. The microstructures of ZnO/PAA assembly were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X‐ray diffraction (XRD). The results showed that the ZnO nanowires can be uniformly assembled into the nanochannels of PAA template. The growth mechanism of ZnO nanowires and the conditions of the coordination reaction are discussed. Photoluminescence (PL) measurement shows that the ZnO/PAA assembly system has a blue emission band caused by the various defects of ZnO. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
ZnO/α‐Fe2O3 nanocomposites were fabricated through a two‐step hydrothermal method. The morphology and composition of the as‐synthesized products were characterized by X‐ray powder diffraction (XRD), field emission scanning electron microscopy (FESEM), energy‐dispersive X‐ray spectroscopy (EDS), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). The gas sensing properties of the fabricated products were investigated towards ethanol, acetone, propanol, isopropanol, formaldehyde, chloroform and so on. The results demonstrated that the ZnO/α‐Fe2O3 nanocomposites exhibited excellent sensing properties and showed remarkably higher sensing responses and much lower optimum operating temperature compared to individual ZnO and α‐Fe2O3. In addition, the ZnO/α‐Fe2O3 nanocomposites have some selectivity for ethanol, propanol and isopropanol. The possible gas sensing mechanism was also proposed. Our studies demonstrate that our fabricated materials could be widely used in the future.  相似文献   

8.
The flower‐like ZnO with micro‐nano hierarchical structure is successfully obtained by a simple hydrothermal synthesis, using sodium dodecyl benzene sulfonate (SDBS) as a structure direct agent. The resulted ZnO micro‐flowers are very uniform in morphology with particle sizes around 1 µm. A number of techniques, including X‐ray diffraction (XRD), field emission scan electron microscopy (FESEM), energy‐dispersive spectroscopy (EDS), fourier transform infrared (FTIR) spectra and thermogravimetry analysis (TGA), are used to characterize the obtained ZnO. The self‐assemble of ZnO nano‐sheets under the direction of SDBS leads to the formation of ZnO micro‐flowers. The room temperature photoluminescence property of the obtained flower‐like ZnO exhibits a broad visible light emission. The surface of as‐made ZnO shows a very hydrophilic property, while the special micro‐nano hierarchical structure enables the ZnO micro‐flower a superhydrophobic surface after modification of fluoroalkylsilane.  相似文献   

9.
Two kinds of hollow twinning ZnO microstructures were synthesized through a simple hydrothermal method without additional templates or any surfactants. Dumbbell‐like and shuttle‐like ZnO microstructures with hollows were obtained by changing the materials source. The products were characterized by X‐ray power diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high‐resolution transmission electron microscopy (HRTEM). It was found that different precursors may be responsible for the formation of two different morphologies. Based on the time‐dependent experiments, we investigated the growth process of these hollow twinning structures and found the “Ostwald‐ripening process” played an important role. The interesting point of this growth process was that the interface of the two twinning structure performed as the activate center where the Ostwald‐ripening process carried out. We also investigated the luminescent properties of the as‐obtained products by photoluminescence (PL) spectroscopy. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
ZnO nanostructures with various morphologies including rod‐like, sheet‐like, needle‐like and flower‐like structures were successfully synthesized via a fast and facile microwave‐assisted hydrothermal process. Reaction temperature, reaction time and the addition of NaOH were adjusted to obtain ZnO with different morphologies. Scanning electron microscopy(SEM), transmission electron microscope(TEM), X‐ray diffraction (XRD) and ultraviolet spectrophotometer (UV) were used to observe the morphology, crystal structure, ultraviolet absorption and photocatalytic activity of the obtained ZnO. The results indicated that growth rate of ZnO nanostructure along [001] direction was more sensitive to temperature compared with those along [101] and [100] directions. The competition between anionic surfactant and OH played an important role in the formation of ZnO with various morphologies. Flower‐like ZnO had better ultraviolet absorption property and excellent photocatalytic activity than ZnO in the other morphologies. On the basis of the above results, a possible growth mechanism for the formation of ZnO nanostructures with different morphologies was described.  相似文献   

11.
The formation process of ZnO/ZnS core/shell microcomposites and ZnS microspindles prepared by the reaction of ZnO colloids and thioacetamide under hydrothermal conditions was investigated in detail by X‐ray powder diffraction, field emission scanning electron microscopy, transmission electron microscopy and selected‐area electron diffraction techniques. The precursors of spindlelike ZnO colloids were prepared by a hydrothermal method with the help of a surfactant. A growth mechanism was proposed to account for the formation of ZnO/ZnS core/shell microcomposites and ZnS microspindles. Luminescence measurement revealed that ZnO/ZnS core/shell microcomposites integrated the luminescence effect of ZnO and ZnS. The blue and green emissions were dramatically enhanced, while the orange emission disappeared. The results provide a good approach to tune the visible emission of the ZnO nanostructures by ZnS coating. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
A simple sonochemical route for the synthesis of Ag nanoparticles on ZnO nanorods is reported. Ultrasonic irradiation of a mixture of ZnO nanorods, Ag(NH3)2+, and formaldehyde in an aqueous medium yields ZnO nanorod/Ag nanoparticle composites. The powder X‐ray diffraction of the ZnO/Ag composites shows additional diffraction peaks corresponding to the face‐center‐cubic structured Ag crystalline, apart from the signals from the ZnO nanorods. Scanning electron microscopy and transmission electron microscopy images of the ZnO/Ag composites reveal that the ZnO nanorods are coated with Ag nanoparticles with a mean size of several tens nanometer. The absorption band of ZnO/Ag composites is distinctly broadened and red‐shifted, indicating the strong interfacial interaction between ZnO nanorods and Ag nanoparticles. This sonochemical method is simple, mild and readily scaled up, affording a simple way for synthesis of other composites. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Synthesis of linked ZnO micro rods by microwave radiation and its characterization is presented in this report. In this simple microwave assisted solution phase route zinc nitrate and hexamethylenetetramine has been used as the starting materials for the synthesis of linked ZnO rods. Linked ZnO rods with various morphologies such as bipods, tripods, tetrapods and etc have been prepared. The influence of irradiation time of microwave on the formation of linked ZnO rods was investigated. X‐ray powder diffraction (XRD), field emission scanning electron microscopy (FESEM), and energy dispersive spectroscopy (EDS) were used for the characterization of the product. The FESEM images showed ZnO rods of diameter in the range of 100‐200 nm and length around 5000 nm. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Single crystalline Ce-doped ZnO hexagonal nanoplatelets are successfully synthesized. Zinc acetate, cerium nitrate, potassium hydroxide and poly vinyl alcohol were mixed together and transferred to a 100 mL Teflon-lined stainless steel autoclave kept at 150 °C for 24 h. The obtained precipitant is calcined at 600 °C. The morphology and microstructure were determined by field emission scanning electron microscopy (FE-SEM), X-ray diffraction transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX) and photoluminescence (PL) spectroscopy. The investigation confirmed that the products were of the wurtzite structure of ZnO. The doped hexagonal nanoplatelets have edge length 25 nm and thickness 11 nm. EDX result showed that the amount of Ce in the product is about 15%. Photoluminescence of these doped hexagonal nanoplatelets exhibits a blue shift and weak ultraviolet (UV) emission peak, compared with pure ZnO, which may be induced by Ce-doping. The growth mechanism of the doped hexagonal nanoplatelets was also discussed.  相似文献   

15.
ZnO nanostructures with different morphologies were prepared in microemulsions with ZnSO4 and ammonia as raw materials. The effects of microemulsion types, concentration of reactants, W values, co‐surfactants, surfactants, oil phases and calcination temperatures were systematically studied. The products were characterized by X‐ray diffraction (XRD), differential scanning calorimetry and thermogravimetry (DSC‐TG), transmission electron microscopy (TEM), high‐resolution TEM (HRTEM), and photoluminescence (PL) spectrum. Results show that ZnO nanoparticles were obtained in water‐in‐oil microemulsions while ZnO nanorods are gained in bicontinuous microemulsions. Water‐in‐oil microemulsions and long carbon chains of surfactants can prevent the preferential growth of ZnO. The particle size of the products increased with the increase of W values, calcination temperatures and the concentration of reactants but decreased with the increase of the carbon chain length of surfactants, co‐surfactants and oil phases. PL spectrums show that the UV emission peak weakened and visible emission peak increased with the decrease of particle size. Meanwhile, the PL spectrums have a little red‐shifted.  相似文献   

16.
We synthesized In2O3/ZnO/Al‐doped ZnO (AZO) core‐double shell nanowires, in which the inner shell (ZnO) and the outer shell (AZO) have been subsequently deposited on the core In2O3 nanowires. With their one‐dimensional morphology being preserved, the X‐ray diffraction (XRD), lattice‐resolved transmission electron microscopy (TEM) image, selected area electron diffraction, and Raman spectrum coincidentally revealed that the shell was comprised of hexagonal ZnO phase. In addition, TEM‐EDX investigation revealed the presence of Al elements in the shell region. The thermal annealing at 700 °C did not significantly change the nanowire morphology, however, the XRD spectrum indicated that the ZnO phase was crystallized by the annealing. PL spectrum of the 700 °C‐annealed In2O3/ZnO/AZO core‐double shell nanowires was comprised of three Gaussian bands at approximately 2.1 eV, 2.4 eV, and 3.0 eV, respectively. The integrated intensities of 2.1 eV‐, 2.4 eV‐, and 3.0 eV‐bands were decreased by the thermal annealing. This study will pave the road to the preparation and applicaition of double‐shelled nanowires. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
We report the syntheses of vertically aligned, beaded zinc germinate (Zn2GeO4)/zinc oxide (ZnO) hybrid nanowire arrays via a catalyst-free approach. Vertically aligned ZnO nanowire is used as a lattice matching reactive template for the growth of Zn2GeO4/ZnO nanowire. The morphology and structure of the as-prepared samples were characterized using X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). TEM studies revealed the beaded microstructures of the Zn2GeO4/ZnO nanowire. The thickness and microstructures of crystalline beads could be easily controlled by tuning the growth duration and temperature. The photoluminescence spectrum of the Zn2GeO4/ZnO nanowires is composed of two peaks, i.e., the ultraviolet (UV) peak and the defect peak. For longer treatment duration of the samples, both the UV and defect peak intensities decrease dramatically. One application of the as-prepared Zn2GeO4/ZnO nanowire is to use the nanowire as template for the growth of three-dimensionally (3D) aligned, high-density ZnO nanobranches en route to hierarchical structure. The study of field emission properties of the as-prepared samples revealed the low turn-on voltage and high current density electron emission from the 3D ZnO nanobranches as compared to the ZnO nanowires and Zn2GeO4/ZnO nanowires. Furthermore, the electrical transport behavior of single hybrid nanowire device indicates the formation of back-to-back Schottky barriers (SBs) formation at the contacts and its application in white-light response has been demonstrated.  相似文献   

18.
Radial‐like ZnO structures were prepared using zinc sulfate (ZnSO4·7H2O) and zinc acetate [Zn(CH3COO)2·2H2O] as zinc sources by a facile template‐free hydrothermal method in this paper. Structural and optical properties of radial‐like ZnO structures are characterized by X‐ray diffraction (XRD), field emission scanning electron microscopy (FESEM), UV‐vis spectrophotometer and photoluminescence measurement (PL). It has been found that the distinct surface morphologies of radial‐like ZnO structures grown by different zinc sources. Slim radial‐like ZnO with a hexagonal wurtzite structure is grown by using ZnSO4·7H2O as zinc sources, whereas coarse radial‐like ZnO with zincite structure is achieved by zinc acetate. The UV‐vis absorption spectra of them both display an obvious and significant absorption in the ultraviolet region. The room temperature PL spectra of ZnO structures grown by two different zinc sources possess a common feature that consists of a strong ultraviolet (UV) peak and visible emission band.  相似文献   

19.
ZnO nanorods were synthesized on NiCl2‐coated Si substrates via a chemical vapor deposition (CVD) process. The as‐fabricated nanorods with diameters ranging from 150 nm to 200 nm and lengths up to several tens of micrometers grew preferentially arranged along [0001] direction, perpendicular to the (0002) plane. The clear lattice fringes in HRTEM image demonstrated the growth of good quality hexagonal single‐crystalline ZnO. Room temperature photoluminescence (PL) spectra illustrated that the ZnO nanorods exhibit strong UV emission peak and green emission peak, peak centers located at 388 nm and 506 nm. A possible growth mechanism based on the study of our X‐ray diffraction (XRD), electron microscopy and PL spectroscopy was proposed, emphasizing the effect of NiCl2 solution (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
In this research we report synthesis of the heterostructure Mg‐Al‐Zn mixed metal oxide (ZnO/MMO) nanocomposite photocatalysts derived from Zn(OH)2/Mg‐Al‐layered double hydroxides (ZLDHs) precursors. The obtained samples were characterized by the X‐ray diffraction (XRD), FT‐IR, BET surface area, ICP and TG/DTG methods. The chemical compositions and morphology of the synthesized materials were investigated by the energy dispersive X‐ray analysis (EDX) and the transmission electron microscopy (TEM). The results reveal that at the reaction time 96 h, ZLDH has the highest crystalinity which was confirmed by the X‐ray diffraction spectra. The calcined samples at 500, 600 and 700 °C for 4 h show that the crystallinity of the nanocomposite improves with the increase of calcination temperature. The photocatalytic activities of synthesized nanocomposites were compared for the degradation of C. I. Basic Blue 3 (BB3) dye under UV illumination in aqueous solution. Among the synthesized nanocomposites, ZnO/MMO calcined at 700 °C shows the highest efficiency towards the removal of dye. The effect of UV illumination on the stability of ZnO in ZnO/MMO nanocomposite and pure ZnO was also investigated. The results showed that the photostability of ZnO in ZnO/MMO nanocomposite is increased compared to the pure ZnO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号