首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The thermal decomposition of freeze‐dried Li‐Mn(II)‐Fe(III)‐formate precursors was investigated by means of DTA, TG and mass spectroscopy. By the thermal treatment of the prefired precursors between 400 and 1000°C, single phase solid solutions LixMn1+xFe2–2xO4 (0 ≤ x ≤ 1) with cubic spinel structure were obtained. To get single phase spinels, special conditions concerning the temperature T and the oxygen partial pressure p(O2) during the synthesis are required. Because of the high reactivity of the freeze‐dried precursors, in comparison with the conventional solid state reaction, the reaction temperature can be lowered by 200°C. The cation distribution and the properties of the Li‐Mn‐ferrites were studied by chemical analysis, X‐ray powder diffraction and magnetization measurements. It was found that for high substitution rates, almost all lithium occupies the tetrahedral coordinated A‐sites of the spinel lattice AB2O4, while at small x‐values, lithium ions are distributed over the tetrahedral and octahedral sites. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
In the course of development of transparent semiconducting oxides (TSOs) we compare the growth and basic physical properties bulk single crystals of ultra-wide bandgap (UWBG) TSOs, namely β-Ga2O3 and Ga-based spinels MgGa2O4, ZnGa2O4, and Zn1-xMgxGa2O4. High melting points of the materials of about 1800 -1930 °C and their thermal instability, including incongruent decomposition of Ga-based spinels, require additional tools to obtain large crystal volume of high structural quality that can be used for electronic and optoelectronic devices. Bulk β-Ga2O3 single crystals were grown by the Czochralski method with a diameter up to 2 inch, while the Ga-based spinel single crystals either by the Czochralski, Kyropoulos-like, or vertical gradient freeze / Bridgman methods with a volume of several to over a dozen cm3. The UWBG TSOs discussed here have optical bandgaps of about 4.6 - 5 eV and great transparency in the UV / visible spectrum. The materials can be obtained as electrical insulators, n-type semiconductors, or n-type degenerate semiconductors. The free electron concentration (ne) of bulk β-Ga2O3 crystals can be tuned within three orders of magnitude 1016 - 1019 cm?3 with a maximum Hall electron mobility (μ) of 160 cm2V?1s?1, that gradually decreases with ne. In the case of the bulk Ga-based spinel crystals with no intentional doping, the maximum of ne and μ increase with decreasing the Mg content in the compound and reach values of about 1020 cm?3 and about 100 cm2V?1s?1 (at ne > 1019 cm?3), respectively, for pure ZnGa2O4.  相似文献   

3.
A. Paul  N. Yee 《Journal of Non》1977,24(2):259-276
The vanadium(IV)-vanadium(V) equilibrium in a 37.5BaO, 5.0Al2O3, 57.5B2O3 mol% + X mol% V2O5 (where X = 0.25?32.5) glass system has been studied as functions of temperature, partial pressure of oxygen and total vanadium concentration of the melt. The vanadium(V)/vanadium(IV) ratio in the melt increased with increasing partial pressure of oxygen, lowering temperature of melting, and with increasing total vanadium content of the melt. With X ? 10, the vanadium(V)/vanadium(IV) ratio became almost independent of the total vanadium content of the melt.With this knowledge of oxidation-reduction behaviour, a series of glasses containing 2.8?32.5 mol% V2O5 (at about 4 mol% intervals) and having a constant vanadium(IV)/vanadium(V) ratio (0.17) were prepared. Density, electronic absorption spectrum (both d-d and charge transfer transitions), and ESR of these glasses were measured. Optical and ESR spectra of these glasses indicated the vanadium(IV) to be present as vanadyl ion, VO2+; g| decreased monotonically with increasing vanadium content of these glasses, whereas gβ remained unchanged. The charge transfer transition energy due to vanadium(V) decreased, and the extinction coefficient increased by orders of magnitude with increasing vanadium content of the glass; the most striking changes occurred at X ≈ 10 mol%. DC conductivity of these glasses was measured at different temperatures; a plot of log (?/T) versus 1/T produced straight lines. The slope of these lines remained almost constant (39 ± 1 kcal/mol) for the glasses containing up to about 10 mol% V2O5; with further increase of V2O5 the slope decreased sharply.It has been concluded that the abrupt changes in properties like partial molar volume of V2O5, charge transfer spectrum of vanadium(V), activation energy of polaron hopping — all of which occurred around X ≈ 10 mol% — is due to a major change in the nature of vanadate groups rather than vanadium(IV) in these glasses.  相似文献   

4.
《Journal of Non》2005,351(46-48):3624-3629
This paper describes a new route for the preparation of V2O5–SiO2 mixed oxides with high vanadium content and high surface area by the sol–gel processing method. Dry samples were characterized by powder X-ray diffraction, electron paramagnetic resonance, Fourier-transform infrared, and energy dispersive X-ray spectrometry. Our results show that the incorporation of vanadium pentoxide into the silica matrix was obtained by intimate mixing of the two different inorganic polymers (Si–O and V–O based polymers), and the overall structure is held together by a Si–O–Si network interpenetrated with V–O–V polymeric chains. The catalytic activity of the V2O5–SiO2 mixed oxides was evaluated in the oxidation of the cyclooctene and styrene in liquid phase.  相似文献   

5.
《Journal of Non》2003,315(1-2):77-88
The crystallisation of CaO–ZrO2–SiO2 glasses doped with V2O5 (0.1–5 mol%) has been investigated in terms of microstructure and thermal parameters. Results indicate that crystallisation is predominantly controlled by a surface nucleation mechanism, even though a partial bulk nucleation has been encountered in compositions containing more than 2 mol% of doping oxide. As detected from differential thermal analysis curves, glass transition temperature and crystallisation temperature, are strongly dependent upon V2O5 content varying from 0.0 to 2.0 mol%, while the crystallisation activation energy values decrease with a parabolic trend from B-glass (0.0 mol% V2O5 content, 495±7) to V-0.7 (0.7 mol% V2O5 content, 420±6) composition, increasing again to 442±5 kJ/mol K with higher amount of V2O5. The microstructure of the glass-ceramic materials clearly showed a marked dependence upon the amount of V2O5, also due to the presence of phase separation for content higher than 0.7 mol%. Wollastonite, CaO·SiO2, and a calcia–zirconia–silicate, 2CaO·4SiO2·ZrO2, are the main crystalline phases whose ratio slightly varies with vanadium oxide content. The glass ceramics obtained from the studied materials are greenish and bluish coloured, so it is possible to use the studied glasses as coloured frits for tile glazes.  相似文献   

6.
The liquidus temperature (TL) and the equilibrium mass fraction of spinel were measured in the regions of low-silica (less than 42 mass% SiO2) high-level waste borosilicate glasses within the spinel primary phase field as functions of glass composition. The components that varied, one at a time, were Al2O3, B2O3, Cr2O3, Fe2O3, Li2O, MnO, Na2O, NiO, SiO2, and ZrO2. In the low-silica region, Cr2O3 increased the TL substantially less, and Li2O and Na2O decreased the TL significantly less than in the region with 42-56 mass% SiO2. The temperature at which the equilibrium mass fraction of spinel was 1 mass% was 25-64 °C below the TL.  相似文献   

7.
DC resistivity, thermopower and optical absorption of xV2O5–(1 ? x) As2O3 (0.58  x  0.93) glasses have been studied as a function of composition. The transport mechanism in these glasses has been identified to be a combination of hopping of small polarons between V4+ and V5+ sites and small bipolarons between As3+ and As5+ sites respectively. Electrical conductivity is found to be more of a function of vanadium content than arsenic concentration in the glasses, indicating that the contribution of bipolarons to the conductivity is negligible. Thermopower has also been found to be sensitive to the composition of the glasses. At low vanadium concentrations, the thermopower is negative, which exhibits a sign reversal as vanadium concentration is increased (at x = 0.7). An important feature of these glasses is that the thermopower is not a function of [V5+]/[V4+] ratio, as is normally observed in vanadate glasses, and such a phenomenon suggests that the arsenic ions (bipolarons) in these glasses contribute to the thermal transport phenomena in a significant way.  相似文献   

8.
《Journal of Non》2006,352(21-22):2100-2108
Electrical and optical properties of phosphate glasses containing vanadium and manganese ions in the xP2O5–[(100  x)(V2O5 + MnO)] (PVM) system have been investigated. This is the last article of a III-part series devoted to the electronic properties of phosphate glasses containing a mixture of transition ions. The first article was devoted to the electrical conductivity of glasses having the general composition: xP2O5–[(100  x)(V2O5 + Fe2O3)] (PVF). Competitive transport of small polarons on V and Fe ion sites was found to contribute to a mixed transition-ion effect (MTE) in PVF glasses. Several features of MTE were found to be similar to the well known mixed alkali effect, observed in glasses containing two alkali ions. In the second article, optical absorption and electronic conduction of xP2O5–[(100  x)(Fe2O3 + MnO)] (PFM) glasses were reported. In the absence of competitive transport between the two transition ions (since Mn ions were determined not to contribute to dc conduction), MTE was not observed. The most important feature of PFM glasses was a sharp increase in resistivity at a critical concentration of iron ions, similar to ‘metal–insulator transition’ (MIT). In the present article, we report a resistivity transition in PVM glasses which is similar to that exhibited by the glasses of the PFM series. While Fe ions contributed the carriers in the PFM glasses, V ions serve the same purpose in the PVM compositions. As the concentration of vanadium ions, nV, is decreased in the composition range 0.82 > nV > 0.40, resistivity (ρ) increases marginally. For glasses with 0.2 < nV < 0.40, resistivity and the activation energy for dc conduction (W) increase sharply with decreasing nV, marking the incidence of an MIT-type transition. As in the PFM glasses, the observation of MIT coincides with the transformation of small polarons to small bipolarons, which is confirmed by the shifting of the small polaron optical absorption band to higher energies with decreasing V concentration.  相似文献   

9.
The magnetic and transport properties of polycrystalline YBa2 (Cu1‐xMx)3 O7‐δ (M = B and Mn) superconductor was investigated. Samples of YBa2(Cu1‐xBx)3O7‐δ doped with several concentrations of boron B(x = 0.05 and 0.1) were investigated using magnetization measurements. A YBa2(Cu1‐xMnx)3O7‐δ sample doped with Mn with concentration of x = 0.02 was investigated using current‐voltage (I‐V) measurements. Our results on the YBa2(Cu1‐xBx)3O7‐δ samples reveal a considerable increase in the hysterisis width of the magnetization, M versus the applied magnetic field H with increasing boron concentration. The lower critical field was also found to be enhanced by boron doping. The critical current density, Jc was found to be significantly enhanced in the Mn‐doped sample. The enhancement of Jc was found to be more significant at the lower temperatures for all applied magnetic fields used (0 Oe, 300 Oe, and 500 Oe). Thus, chemical doping is suggested to enhance the vortex pinning forces in the YBCO samples. From the resistivity (R‐T) measurements, chemical doping of the samples was found to have no significant effect on the critical temperature, Tc. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The crystallization characteristics and kinetics of a molten blast furnace slag during continuous cooling were investigated. Samples of molten blast furnace were continuously cooled both in tiny amounts in a differential scanning calorimetry (DSC) equipment and in bulk states in a cooling mold. The mineragraphy and morphology were investigated by means of X-ray diffraction (XRD) and scanning electron microscope (SEM). The continuous cooling crystallization kinetics were studied using different models based on DSC data. The results show that akermanite (2CaO·MgO·2SiO2) and gehlenite (2CaO·Al2O3·SiO2) are the major minerals in the continuously cooled crystalline blast furnace slag. The mechanism of crystallization of the blast furnace slag during continuous cooling is dominated by both surface nucleation and one-dimensional growth with bulk nucleation, which is significantly different to that during heating. The activation energy of crystallizations of akermanite and gehlenite was determined by Kissinger and Matusita methods. The values obtained are much higher than that yielded during heating.  相似文献   

11.
G.D. Khattak  A. Mekki  L.E. Wenger 《Journal of Non》2009,355(43-44):2148-2155
Vanadium phosphate glasses with the nominal chemical composition [(V2O5)x(P2O5)1?x], where x = 0.30, 0.40, 0.50, and 0.60, have been prepared and investigated by X-ray photoelectron spectroscopy (XPS) and magnetization measurements. Asymmetries found in the O 1s, P 2p, and V 2p core level spectra indicate the presence of primarily P–O–P, P–O–V, and V–O–V structural bonds, a spin–orbit splitting of the P 2p core level, and more than one valence state of V ions being present. The magnetic susceptibility data for these glasses follow a Curie–Weiss behavior which also indicates the presence of some V ions existing in a magnetic state, i.e., a valence state other than that of the non-magnetic V5+. From qualitative comparisons of the abundance of the bridging oxygen or P–O–P sites as determined from the areas under the various O 1s peaks with the abundances of differing phosphate structural groups associated with the presence of different valence states of the vanadium ions, a glass structure model consisting of a mixture of vanadate phosphate phases is proposed for these glass samples. These include V2O5, VOPO4, (VO)2P2O7, VO(PO3), and V(PO3)3 with the abundance of orthophosphate (PO4)3? units increasing with increasing vanadium content.  相似文献   

12.
A series of SiO2-B2O3 xerogels with changing SiO2/B2O3 mol% and doped with selected transition metal ions was prepared. These mixed oxide materials contained copper, nickel, cobalt, manganese, chromium and vanadium ions coordinated to oxygen donor atoms in water and OH groups. Extensive studies of the transition metal complexes in the xerogels by such spectral techniques as diffuse reflectance (UV-vis), electron paramagnetic resonance and fluorescence spectroscopies show that there exist Cu(II) in the coordination environment of D4h symmetry, Ni(II) in octahedral coordination sphere, Co(II) in both tetrahedral and octahedral environments, Mn(II) preferably in the Oh coordination and Mn(III) in pseudo-octahedral sphere; then octahedrally coordinated Cr(III) ions occur in coupled pairs or clusters and V(IV) as VO2+ ions exist in distorted (C4v) octahedral surrounding.  相似文献   

13.
Layered intercalation compounds LiCo1‐xSnxO2 (x= 0 to 0.1) have been prepared using a simple combustion route method. X‐ray diffraction patterns and Laser Raman spectrum suggest that the synthesized materials had the R‐3m structure. Scanning electron images show that particles are well‐crystallized with a size distribution in the range of 50‐100 nm. The room temperature electrical conductivity of the sample increased with Sn content. For LiCo1‐xSnxO2(x = 0, 0.01, 0.03, 0.05 and 0.1), the first discharge capacity increased with increase in Sn content. Among these samples, LiCo0.95Sn0.05O2had produced the best performance of all others with a stable reversible capacity of 186 mAhg‐1 after 30 cycles. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Substituted barium hexaferrites, BaFe12‐2xZnxTixO19 (0 ≤ x ≤ 2), have been synthesized by thermal decomposition of freeze‐dried acetate precursors. Decomposition and phase formation were investigated by means of thermal analysis, XRD and IR spectroscopy. The initially amorphous decomposed precursor reacts to the substituted hexaferrite via a spinel‐like maghemite (γ‐Fe2O3) and Zn/Ti containing spinel ferrites. The synthesis method allows a decrease of the reaction temperature and time, necessary for producing a single phase hexaferrite. At relative low reaction temperatures, the substitution rate x shows remarkable differences at different iron sublattices. For x ≤ 0,8 this selective substitution results in an increase of magnetization as x grows. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
A glass‐ceramic Bi1.7V0.3Sr2Ca2Cu3Ox superconductor was prepared by the melt‐quenching method. The compound was characterized by scanning electron microscopy, x‐ray diffraction, differential thermal analysis, current‐voltage characteristics, transport resistance measurements, and Hall effect measurements. Two main phases (BSCCO 2212 and 2223) were observed in the x‐ray data and the values of the lattice parameters quite agree with the known values for 2212 and 2223 phases. The glass transition temperature was found to be 426 °C while the activation energy for crystallization of glass has been found to be Ea = 370.5 kJ / mol. This result indicates that the substitution of vanadium increased the activation energy for the BSCCO system. An offset Tc of 80 K was measured and the onset Tc was 100 K. The Hall resistivity ρH was found to be almost field‐independent at the normal state. A negative Hall coefficient was observed and no sign reversal of ρH or RH could be noticed. The mobility and carrier density at different temperatures in the range 140‐300 K under different applied magnetic fields up to 1.4 T were also measured and the results are discussed. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
The presence of Lewis and Brønsted acid sites in calcined mixed oxides 10% V2O5/SiO2, 10% V2O5/TiO2, and 10% V2O5/Al2O3 obtained by sol–gel method was determined through infrared spectroscopy using pyridine as a molecular probe. Texturally, they are formed by mesopores and present high specific surface area and controlled porosity. Scanning electron microscopy revealed that vanadium is homogeneously distributed in the materials. The infrared spectra of samples submitted to different temperatures after the absorbance of pyridine were obtained. The existence of active metal ions on the surface of the materials was evidenced by the presence of Lewis and Brønsted acid sites, which confers them potential catalytic properties.  相似文献   

17.
The distribution of boron and phosphorus between Al2O3-CaO-MgO-SiO2 and Al2O3-BaO-SiO2 slags and silicon metal was examined for the purposes of establishing the possibility of refining metallurgical-grade silicon to solar grade silicon. Distribution coefficients of B and P were normalized with the estimated oxygen partial pressure of the system to isolate the influence of basicity as the composition of the slag was varied in terms of the basicity (as CaO:SiO2 ratio) and oxygen potential (as Al2O3:SiO2 ratio) of the former and of the basicity (as BaO:SiO2 ratio) of the latter slag systems. For both of these impurity elements, the normalized distribution showed a different dependence on corrected optical basicity in each slag system studied. Values were highest in the Al2O3-CaO-MgO-SiO2 slag with varying SiO2:Al2O3, where the impurities are thought to associate with Mg, and lowest in the Al2O3-BaO-SiO2 slag, where the impurities are thought to associate with Ba. The different dependence on basicity in each system is attributed to the differing manner in which the activity coefficient of the actual impurity compound in the slag varies with basicity. From thermodynamic calculations it was concluded that the difference in normalized distributions between the slag systems is attributed to the magnitude of the ratio of equilibrium constant to activity coefficient of the impurity oxides. It was found that where basicity is equal and the form of the impurity oxide in the slag is equivalent, phosphorus is expected to have a much smaller activity coefficient in the slag than boron.  相似文献   

18.
《Journal of Non》2005,351(8-9):632-639
Neutron and X-ray scattering studies of (Li2O)x–(TeO2)2–V2O5 glasses with x = 0, 1 and 2, obtained by melting and subsequent cooling in air to room temperature, have been performed. Reciprocal space data have been Fourier transformed into real space yielding the radial distribution functions. Nearest and next neighbor peaks have been analyzed using a least-squares fitting method which suggests the presence of both TeO3 and TeO4 coordination polyhedra, the fivefold coordination of lithium and mixture of 6, 5 and 4 coordination numbers of vanadium. These results are discussed in relation to the electronic and ionic conductivity properties.  相似文献   

19.
Solid solution series of La1‐ySryCo1‐xFexO3‐δ were extensively studied in the past as cathode materials for solid oxide fuel cells. However, the crystal structure behavior of La1‐ySryCo1‐xFexO3‐δ solid solution series when La‐ions are replaced with another rare‐earth ion or metallic alkaline earth metal is at present not fully understood. Here we report X‐ray powder diffraction measurements performed on samples of the Sm0.8Sr0.2Co1‐xFexO3‐δ solid solution series. This study demonstrates that the average A‐cation radius, as well as the Fe content (x), affects the structural modification of the A1‐ySryCo1‐xFexO3+δ solid solution series significantly. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Four types of slag with different basicity, MgO and Al2O3 content were used to simulate the synthetic ladle slag. The dissolution behavior of MgO particles was then investigated using the direct dissolution method. The results show that the dissolution rate of MgO particles strongly depends on the slag composition and temperature. At the initial stage, the dissolution rate shows a good linear relation with time. Once spinel product forms around the MgO core, the dissolution rate decreases remarkably. The formation and function of the inner slag layer between the MgO core and the spinel product were investigated in detail. The inner slag layer is possible to act as a transfer passage for Mg element from the MgO core to the spinel product. The rate-limiting step of MgO dissolution is determined by the diffusion of spinel product toward the bulk slag.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号