首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Variation of the chemical composition of ternary CdS1−xSex nanocrystals grown in borosilicate glass depending on the thermal treatment is studied by resonant Raman spectroscopy. It is shown that only for the nanocrystals with roughly equal content of substitutive S and Se chalcogen atoms (0.4<x<0.6) the nanocrystal composition is independent of the thermal treatment parameters. In other cases an increase of the thermal treatment temperature (625–700 °C) and duration (2–12 h) results in a considerable increase of the predominant chalcogen content in the nanocrystals.  相似文献   

2.
Anorthic SrHPO4 nanobelts and hexagonal Sr10O(PO4)6 nanorods were obtained by a simple hydrothermal method without adding any surfactant as template. The as-synthesized products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). TEM and HRTEM observations of the products revealed that the as-prepared SrHPO4 nanobelts and Sr10O(PO4)6 hexagonal nanorods are single crystals with their preferential growth direction along the normal of (1 0 0) and (0 0 1) planes, respectively.  相似文献   

3.
Improving the property of ZnO nanorods using hydrogen peroxide solution   总被引:1,自引:0,他引:1  
Zinc oxide (ZnO) nanorod arrays made by the hydrothermal method were treated with hydrogen peroxide (H2O2) solution through two different approaches. One is to immerse ZnO nanorod sample into H2O2 solution. The other is a pre-treatment of spin-coating H2O2 solution on the seed layer before the growth of the ZnO nanorods. In the first approach, we found that the ultraviolet (UV) emission peak of the ZnO nanorod photoluminescence (PL) spectra was strongly dependent on the immersion time. In the second approach, the H2O2 solution influences not only the quality of the seed layer, but also the amount of the oxygen interstitial defects in the ZnO nanorods grown thereon. As a result, the UV emission intensity from the ZnO nanorods is enhanced almost five times. The ZnO nanorod arrays with few oxygen interstitial defects are prepared by the hydrogen peroxide treatment and expected to enable the fabrication of optoelectronic device with excellent performance.  相似文献   

4.
X.M. Liu  Y.C. Zhou   《Journal of Crystal Growth》2004,270(3-4):527-534
Large quantities of ZnO nanorods have been synthesized by the seed-mediated method in the presence of polyethylene glycol at 90 °C. The products are characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy and high-resolution transmission electron microscopy. The as-grown ZnO nanorods are uniform with a diameter of 40–70 nm and length about 2 μm. The nanorods grew along the [0 0 1] direction. Possible roles of ZnO seeds and polymer in the growth of ZnO nanorods are also discussed.  相似文献   

5.
ZnO nanorod arrays are grown on a-plane GaN template/r-plane sapphire substrates by hydrothermal technique. Aqueous solutions of zinc nitrate hexahydrate and hexamethylenetetramine were employed as growth precursors. Electron microscopy and X-ray diffraction measurements were carried out for morphology, phase and growth orientation analysis. Single crystalline nanorods were found to have off-normal growth and showed well-defined in-plane epitaxial relationship with the GaN template. The 〈0 0 0 1〉 axis of the ZnO nanorods were observed to be parallel to the 〈1 0 1¯ 0〉 of the a-plane GaN layer. Optical property of the as-grown ZnO nanorods was analyzed by room temperature photoluminescence measurements.  相似文献   

6.
夏冬林  郭锦华 《人工晶体学报》2020,49(12):2274-2281
采用两步法在导电玻璃(FTO)基板上制备纯氧化锌(ZnO)纳米棒和钇掺杂的氧化锌(ZnO∶Y)纳米棒,采用连续离子层吸附反应法(SILAR)在所制备的ZnO及ZnO∶Y纳米棒上沉积CuInS2量子点制备ZnO/CuInS2和ZnO∶Y/CuInS2光阳极。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、电子探针能谱仪(EDS)、紫外-可见分光光度计(UV-Vis)、电流密度-电压(J-V)曲线等技术手段对不同光阳极样品的晶相结构、微观形貌、化学组成、光吸收性能和太阳电池性能进行了表征。实验结果表明:所制备的ZnO纳米棒和ZnO∶Y纳米棒为六方纤锌矿结构。CuInS2量子点敏化的ZnO纳米棒薄膜的光学带隙从3.22 eV减小为2.98 eV。CuInS2量子点敏化ZnO∶Y太阳能电池的短路电流密度和光电转换效率比未掺杂的ZnO纳米棒组装的太阳能电池分别提高了6.5%和50.4%。  相似文献   

7.
In this study, we report on the enhancement in the light extraction efficiency of GaN blue LEDs topped with ZnO nanorods. The ZnO nanorods were grown by a two-step hydrothermal synthesis with pre-coated ZnO nanoparticles under optimized condition to give the appropriate size and quality, giving an increase in the light output efficiency of 66%. This improvement is attributed to the optimal rod size and spacing with improved thermal dissipation as compared to light extraction from plain GaN surface. During the ZnO growth on the LEDs, 0.55 M of NH3 was added and the ZnO sample was later annealed at 475 °C in N2 ambient, to drive out interstitial oxygen atoms from the tetrahedral unstable site. As a result, a high ratio of UV to orange defect band emission was achieved. The two-step growth of ZnO nanorods on GaN LEDs was effective in generating array of ZnO nanorods which serve as reflector to enhance light extraction from LEDs.  相似文献   

8.
A solvothermal route has been developed to synthesize K2V3O8 nanorods via the reduction of V2O5 using ethanol as the reducing agent as well as the solvent at 200°C. X-ray diffraction and selected area electron diffraction analysis revealed that the as-synthesized products are of tetragonal structure K2V3O8. Transmission electron spectroscopy image showed that the obtained K2V3O8 comprises rod-like nanocrystallites. The formation mechanism of K2V3O8 was studied.  相似文献   

9.
In this study, a biomimetic template was prepared and applied for growing calcium carbonate (CaCO3) nanorods whose shape and polymorphism were controlled. A biomimetic template was prepared by adsorbing catalytic dipeptides into the pores of an anodic aluminum oxide (AAO) membrane. Using this peptide-adsorbed template, mineralization and aggregation of CaCO3 was carried out to form large nanorods in the pores. The nanorods were aragonite and had a structure similar to nanoneedle assembly. This aragonite nanorod formation was driven by both the AAO template and catalytic function of dipeptides. The AAO membrane pores promoted generation of aragonite polymorph and guided nanorod formation by guiding the nanorod growth. The catalytic dipeptides promoted the aggregation and further dehydration of calcium species to form large nanorods. Functions of the AAO template and catalytic dipeptides were verified through several control experiments. This biomimetic approach makes possible the production of functional inorganic materials with controlled shapes and crystalline structures.  相似文献   

10.
Cd1−xZnxS films with 0x0.18 were grown by chemical bath deposition technique on glass substrates from an aqueous solution containing cadmium and zinc sulfate, ammonia and thiourea. Microstructural features, obtained from X-ray diffraction and scanning electron microscopy (SEM) measurements, reveal a predominance of Wurtzite structure and an homogenous microstructure formed by densely microcrystallines for all the samples studied. Cd1−xZnxS semiconductor was found to be resistive and of n-type. Also, the electron density decreases with increased x and the mobility reaches a maximum around x=0.12. Which means that the Cd1−xZnxS films at this composition are of high crystalline quality, i.e. having reduced intrinsic defect concentrations.  相似文献   

11.
以Zn粉为原料,在CuE(E=S, Se)微米球的辅助下,采用化学气相沉积(CVD)法在Si衬底上成功制备出微米级ZnE(E=S, Se)网状晶须.用XRD,EDS,SEM和PL谱分别对产物的结构、成分、形貌和结晶质量进行了测试和分析.结果表明:生长的ZnS和ZnSe微米晶须均为立方闪锌矿结构,长度达300 μm以上,具有接近理想化学计量比的成分和较高的结晶质量.ZnE微米晶须的生长符合氧化还原反应下的气-液-固生长机制,Cu3Zn合金充当了实际的微米晶须生长催化剂,在晶须生长过程中Cu3Zn合金汇聚在一起使ZnE微米晶须形成交叉网状结构.  相似文献   

12.
Cadmium sulfide (CdS) nanocrystals were successfully prepared in inverse microemulsion under γ-irradiation at room temperature. Their shape can be controlled by changing the surfactant concentrations and the addition of hydroxyethyl cellulose (HEC) as the template. CdS nanorods were successfully obtained under γ-irradiation using HEC as the template, which was confirmed by the observation of transmission electron microscopy (TEM). Without the addition of HEC, spherical CdS crystals were formed. X-ray powder diffraction (XRD) pattern and electron diffraction (ED) analysis showed the hexagonal lattice of CdS in the nanorods. Additionally, the optical properties of CdS nanorods were characterized by ultraviolet–visible (UV–Vis) and photoluminescence (PL) spectroscopy.  相似文献   

13.
Vertically well-aligned ZnO nanorods were fabricated in-situ and ex-situ on ZnO homo-buffer layers using catalyst-free metal-organic chemical vapor deposition. Field-emission electron microscopy measurements demonstrated that the nanorods were well aligned and had a uniform diameter of 70–100 nm depending on the growth temperature, irrespective of growth conditions, in-situ and ex-situ. X-ray diffraction measurements demonstrated that the ZnO nanorods and the ZnO buffer layers had a wurtzite structure, and that the crystal quality of the nanorods grown on a smooth surface was better than that of the nanorods grown on a rough surface. Field-emission transmission electron microscopy measurements revealed the presence of a disordered layer at the interface of the nanorod and the buffer layer.  相似文献   

14.
CuInSe2 (CIS) ingots have been prepared by direct reaction of stoichiometric and non-stoichiometric proportions of high-purity Cu, In and Se. Two approaches, namely the one-ampoule process (quartz crucible) and two-ampoule process (graphite crucible) were investigated to grow the crystals, using starting charges with excess copper, and (nearly stoichiometric and with excess indium), respectively. The effect of deviation from stoichiometry in the charge on the physical properties of the resulting polycrystals is presented. Compositional analysis of the best part of the ingots with starting metals ratio (Cu/In) greater than or equal to 1 showed that the matrix preserved the original character of the charge and evidenced that the CIS chalcopyrite structure, -CIS, tolerates well a large In excess. In contrast, the composition of the crystal prepared with a 10% Cu excess was nearly-stoichiometric, with chemical images revealing the formation of heterogeneous phases besides -CIS. The inclusions precipitation was found to increase toward the ingot base. Interestingly, powder X-ray diffraction measurements revealed the presence of secondary phases rather in all the samples. The corresponding diffraction peaks were however few and very weak, with intensities of less than 3% the maximum value recorded for the CIS (1 1 2) plane.  相似文献   

15.
Pb[(Zn1/3Nb2/3)0.91Ti0.09]O3 (PZNT91/9) single crystals were grown by a modified Bridgman method directly from melt using an allomeric Pb[(Mg1/3Nb2/3)0.69Ti0.31]O3 (PMNT69/31) single crystal as a seed. X-ray diffraction (XRD) measurement confirmed that the as-grown PZNT91/9 single crystals are of pure perovskite structure. Electrical properties and thermal stabilization of PZNT91/9 crystals grown directly from melt exhibit different characters from those of PZNT91/9 crystals grown from flux, although segregation and the variation of chemical composition are not seriously confirmed by X-ray fluorescence analysis (XPS). The [0 0 1]-oriented PZNT91/9 crystals cut from the middle part of the as-grown crystal boules exhibit broad dielectric-response peaks at around 105 °C, accompanied by apparent frequency dispersion. The values of piezoelectric constant d33, remnant polarization Pr, and induced strain are about 1800–2200 pC/N, 38.8 μC/cm2, and 0.3%, respectively, indicating that the quality of PZNT crystals grown directly from melt can be comparable to those of PZNT91/9 single crystals grown from flux. However, further work deserves attention to improve the dielectric properties of PZNT crystals grown directly from melt. Such unusual characterizations of dielectric properties of PZNT crystals grown directly from melt are considered as correlating with defects, microinhomogeneities, and polar regions.  相似文献   

16.
The applicability of the edge-defined film-fed growth (EFG) technique for YbxY(1−x)VO4 (x=0.05, 0.1 and 1) was approved by successful growth of crystals up to 80 mm in length as the thin plates. Low-angle grain boundaries and the crystal coloration as main defects were found. Optimal seed orientation was suggested on the strength of vanadate crystal plate morphology. Optical properties, chemical composition and the crystalline quality were investigated.  相似文献   

17.
NaYF4:Yb,Er micro/nanocrystals with different sizes and morphologies such as nanospheres, short flexural nanorods, and half opened microtubes, were synthesized in reverse microemulsion under solvothermal condition using the quaternary reverse microemulsion system, CTAB/1-butanol/cyclohexane/aqueous solution. The X-ray diffraction analysis confirmed that cubic phase NaYF4:Yb,Er can completely transform to hexagonal phase with increasing reaction time. The scanning electron microscope and transmission electron microscope images revealed that the morphology of the product can be tailored by varying the reaction time. A possible crystalline growth process of the NaYF4:Yb,Er micro/nanocrystals was discussed. The obtained half opened microtubes exhibited an intense green upconversion luminescence, which may be attractive in novel optoelectronic devices.  相似文献   

18.
Regular three-dimensional (3D) rose-like Bi2Se3 nanopattern film is fabricated through a simple chemical route. This nanopattern film is self-assembled with ultrathin Bi2Se3 nanosheets having thicknesses of less than 8 nm. The Bi2Se3 nanosheets were formed on the surface of Se nanotubes, and the Se nanotubes were used as both the Se resource and the substrate to support the growth of the Bi2Se3 nanopattern film. Since several length scales are involved in this confined 3D structure, which are developed at different time, during the formation of the micro-structure, a careful control of these length scales is expected to provide new opportunities for engineering the boundary scattering of phonons of different wavelengths and developing new thermoelectric materials with novel properties.  相似文献   

19.
This paper reports high-temperature (305–523 K) electrical studies of chemical bath deposited copper (I) selenide (Cu2−xSe) and copper (II) selenide (Cu3Se2) thin films. Cu2−xSe and Cu3Se2 have been prepared on glass substrates from the same chemical bath at room temperature by controlling the pH. From X-ray diffraction (XRD) profiles, it has been found that Cu2−xSe and Cu3Se2 have cubic and tetragonal structures, respectively. The composition of the chemical constituent in the films has been confirmed from XRD data and energy-dispersive X-ray analysis (EDAX). It has been found that both phases of copper selenide thin films have thermally activated conduction in the high-temperature range. In this paper we also report the variation of electrical parameters with film thickness and the applied voltage.  相似文献   

20.
Critical current density under magnetic fields has been improved by the introduction of artificial pinning centers. Nanorods in REBa2Cu3Oy films are significantly effective as c-axis-correlated pinning centers. However, nanorods sometimes tilt from the c-axis direction of superconducting films. To understand the mechanism of nanorod tilting, ErBa2Cu3Oy films containing Ba(Nb0.5Er0.5)O3 (BNO) nanorods were deposited on a SrTiO3 single crystal with a vicinal surface. Microstructures of the nanorods were examined by transmission electron microscopy (TEM). As a result, it was found that BNO nanorods grew diagonally from steps of the substrate surface in cross-sectional TEM images. The mechanism of the diagonal growth of nanorods can be explained by the segregation coefficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号