首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 93 毫秒
1.
本文使用垂直坩埚下降法制备了40 mm×40 mm×350 mm的BaF2∶5%Y(摩尔分数)晶体,并对晶体样品进行了掺杂含量、闪烁性能、光学性能和辐照损伤的研究。距离籽晶端0~300 mm范围内的Y3+掺杂浓度(摩尔分数)为5.1%±0.9%。晶体样品的平均光输出为2 100 ph/MeV,在662 keV处的最优能量分辨率为10.1%。经60Co放射源辐照累积剂量1 Mrad后,样品在波长220 nm处的透过率由辐照前的87.3%下降至83.5%,在波长300 nm处的透过率由91.8%下降至89.9%。BaF2∶Y晶体的抗辐照性能差于BaF2晶体,经过累积剂量辐照后,BaF2∶Y晶体对波长300 nm光的吸收明显增强。  相似文献   

2.
采用溶胶-凝胶法成功制备出系列Eu3+掺杂和Li+、Eu3+共掺杂Gd2ZnTiO6红色荧光粉,并研究Li+、Eu3+掺杂对样品的晶体结构、微观形貌及发光性能的影响。结果显示,所制备的Gd2ZnTiO6∶Eu3+,Li+(GZT∶Eu3+,Li+) 荧光粉为双钙钛矿结构,属于单斜晶系(空间群:P21/n),大小为10 μm的无规则形状的颗粒。在395 nm近紫外光的激发下,GZT∶Eu3+的发射光谱展示出典型的Eu3+线状特征光谱,发射峰中心位于615 nm处,归属于Eu3+5D07F2跃迁。Eu3+的最佳掺杂浓度为0.07(摩尔分数),样品显示明显的浓度猝灭效应,其机制为电偶极子-电偶极子(d-d)相互作用。此外,研究还发现,Li+掺杂对样品的晶体结构、微观形貌没有影响,但是一定量的Li+掺杂可以显著增强样品的荧光强度。当Li+浓度为0.05时,荧光粉发射主峰强度增强程度最大,提高至原来的4.3倍,说明通过Li+、Eu3+共掺杂可以获得高亮度的GZT红色荧光粉。GZT∶0.14Eu3+,0.05Li+荧光粉的CIE色坐标为(0.631 1,0.375 3)与标准红光色坐标(0.670,0.330)较为接近,是一种潜在的LED用红色荧光粉。  相似文献   

3.
为了研究Na+掺杂对Ca2GdNbO6∶0.03Sm3+荧光粉发光性能的影响,本文采用高温固相反应法成功制备了一系列Ca2GdNbO6∶0.03Sm3+,xNa+(x=0.01、0.03、0.05、0.07、0.10;x为摩尔分数)荧光粉。XRD图谱和精修结果表明,Na+成功掺入Ca2GdNbO6∶0.03Sm3+晶格。发光性能测试结果表明,Na+的掺入提高了Ca2GdNbO6∶0.03Sm3+荧光粉的发光强度,其最佳掺杂浓度为5%。在406 nm波长激发下,荧光粉在602 nm (4G5/26H7/2)处发射峰最强且发射出橙红光。浓度猝灭结果及热稳定性研究表明,Ca2GdNbO6∶0.03Sm3+,0.05Na+基质中能量传递主要发生在最近邻离子之间,荧光粉的热猝灭激活能为0.119 eV。该荧光粉的色坐标位于橙红色区域(0.593 5,0.404 7),与国际照明委员会规定的标准色坐标(0.666,0.333)接近,表明Ca2GdNbO6∶0.03Sm3+,xNa+荧光粉在白光LED领域具有潜在的应用前景。  相似文献   

4.
本文用高温固相法制备了Na+,Dy3+,Eu3+掺杂YAG系列荧光粉。通过改变掺杂的Dy3+浓度、激发波长、掺杂Na+,研究其对发光的影响。X射线衍射结果显示,硼酸、Na+、Dy3+、Eu3+掺入基本不影响YAG的立方晶相,且随Na+、Dy3+、Eu3+浓度增加,样品衍射峰位置向小角度偏移。用λem=590 nm监测Dy3+,15%Eu3+共掺YAG粉体,随Dy3+浓度增加,Eu3+和Dy3+的激发强度均先增大后减小。当用λex=366 nm激发Dy3+,15%Eu3+共掺YAG粉体,此时存在Eu3+→Dy3+的能量传递,计算得到Eu3+→Dy3+的能量传递效率为84.23%。相比10%Dy3+,15%Eu3+共掺YAG,掺入0.5%Na+后,样品中Dy3+发光增强1.5倍,色坐标(0.348 1,0.397),色温5 010 K,接近标准白光。用λex=394 nm激发Dy3+,15%Eu3+共掺YAG粉体,此时存在Dy3+→Eu3+的能量传递,计算得到Dy3+→Eu3+的能量传递效率为88.9%。相比10%Dy3+,15%Eu3+共掺YAG,掺入0.5%Na+后,Eu3+发光增强1.8倍,色坐标(0.466 7,0.416 8),色温2 650 K,达到商用暖白光标准。  相似文献   

5.
本文通过高温固相反应成功制备了Sr3ZnNb2O9∶0.3Eu3+,xNa+(x=0,0.1,0.2,0.3,0.4,0.5)系列荧光粉。X射线衍射分析和精修结果表明,Eu3+和Na+成功掺杂到Sr3ZnNb2O9基质中,并部分取代了Zn2+。采用扫描电子显微镜测试了样品的微观形貌和元素分布。光谱特性和热稳定性研究表明,Na+的最佳掺杂浓度为x=0.2,Na+的引入提高了Sr3ZnNb2O9∶0.3Eu3+荧光粉的热稳定性,活化能为0.163 eV。计算出Sr3ZnNb2O9∶0.3Eu3+, 0.2Na+样品...  相似文献   

6.
采用泡生法生长了115 kg级大尺寸钛宝石(Ti:Al2O3)晶体,晶体外形完整无开裂,制备了口径达φ300 mm的高质量大口径钛宝石单晶样品。在X射线和α粒子激发下测试了晶体的闪烁发光性能。结果表明,Ti:Al2O3晶体的闪烁发光包含近红外和近紫外发光。近红外发光来源于Ti3+特征发射,效率较高,衰减时间慢。近紫外发光来源于Ti局域激子发光和F+心发光,具有较快的衰减时间,其光输出与掺杂导致的自吸收有关。α粒子激发下,光产额达到1 130.5 pe/MeV,其中快成分光产额为29.6 pe/MeV。  相似文献   

7.
采用自发成核坩埚下降法生长了直径25 mm的铈、锶共掺溴化镧(LaBr3∶5%Ce,x%Sr,简称LaBr3∶Ce, Sr,其中x=0.1、0.3、0.5,摩尔分数)闪烁晶体,测试对比了晶体的X射线激发发射光谱、透过光谱和脉冲高度谱等。结果表明,不同Sr2+掺杂浓度的LaBr3∶Ce, Sr晶体在X射线激发下的发射光谱波形基本一致,但相比未掺杂Sr2+的样品,发射峰的峰位发生了明显的红移,随着Sr2+掺杂浓度的增大,发射峰红移程度增大。不同Sr2+掺杂浓度的LaBr3∶Ce, Sr晶体在350~800 nm不存在明显的吸收峰,0.3%和0.5%Sr2+掺杂晶体的透过率有所降低。随着Sr2+掺杂浓度的增大,能量分辨率逐步提高,Sr2+掺杂浓度为0.5%时,LaBr3∶Ce, Sr晶体的能量分辨率最高,达2.99%@662 keV...  相似文献   

8.
本文采用传统的高温熔融法在空气气氛中制备了无色透明的Ce3+激活硼锗酸盐闪烁玻璃,该硼锗酸盐闪烁玻璃中GeO2和Gd2O3总含量为85%,测得其密度在5.82 g/cm3左右,且在450~800 nm线性透过率可达80%以上。加入少量的酒石酸(C4H6O6)作为强还原剂以减少Ce4+的产生,研究了在不同酒石酸添加量下硼锗酸盐闪烁玻璃中Ce3+在340 nm激发波长下的荧光衰减特性,确定了酒石酸的最佳添加量。此外,硼锗酸盐闪烁玻璃鲜有光产额方面的报道,本文测得制备的Ce3+激活硼锗酸盐闪烁玻璃的光产额为27 ph/MeV,且该高密度Ce3+激活硼锗酸盐闪烁玻璃具有最短约14.40 ns的衰减时间。可以预见,该高密度、快闪烁硼锗酸盐闪烁玻璃在高能物理和医学成像等领域有着巨大的发展潜力。  相似文献   

9.
为了获得具有明亮红光发射的上转换发光材料,采用简单的化学沉淀法制备了一系列Yb3+、Er3+、Mn2+掺杂的Gd2O3微晶,并对其形貌、结构和发光性能进行了表征。结果表明,Gd2O3∶10%Yb3+,1%Er3+微晶呈花状,平均粒径为2.28μm,经高温煅烧后呈现结晶性良好的立方相Gd2O3结构,且少量Mn2+掺杂并不会影响微晶的形貌和晶相。在980 nm近红外光激发下,Gd2O3∶10%Yb3+,1%Er3+微晶表现为橙红色发光,归属于Er3+4F9/24I15/2跃迁。同时,随着Mn2+掺杂浓度x(原子...  相似文献   

10.
采用高温固相法制备了一系列Sr3Y2-xTeO9xEu3+新型红色荧光粉,研究了Sr3Y2-xTeO9xEu3+的物相结构、发光性能、衰减寿命以及热稳定性。研究结果表明新型红色荧光粉Sr3Y2-xTeO9xEu3+能在近紫外光或蓝光激发下发出强烈的红光,并确定了Sr3Y2-xTeO9xEu3+的浓度猝灭机制是电偶极-电偶极之间相互作用。其色坐标结果表明,随着掺杂浓度的增加该荧光粉的色坐标均在红色区域。温度相关荧光发射光谱揭示了该荧光粉具有良好的热稳定性。荧光衰减曲线显示在Sr3Y2-xTeO9xEu3+荧光粉中当x=0.34时为最佳掺杂浓度,其平均荧光寿命为0.619 ms。综合以上研究结果表明新型红色荧光粉Sr3Y2-xTeO9xEu3+在荧光转换近紫外激发白光二极管中具有良好的应用前景。  相似文献   

11.
高能物理强度前沿装置、飞行时间技术正电子发射断层扫描、超高频辐射成像和正电子湮灭寿命谱分析等应用对闪烁体的时间响应提出了更高的要求,发展超快衰减闪烁体已成为研究热点之一。氟化钡晶体是一种具有亚纳秒级快闪烁成分的独特无机闪烁体,但其衰减时间约0.6 μs的慢闪烁发光成分会在高计数率应用时引起严重的信号堆积。作为一种抑制慢闪烁成分的有效途径,氟化钡晶体慢闪烁成分抑制的掺杂研究在过去三十年受到持续关注。本文回顾了掺杂抑制氟化钡晶体慢闪烁成分的研究历史,提出了掺杂元素选择的基本原则,重点介绍稀土金属(La、Y、Lu和Sc)、碱土金属(Mg、Sr)、过渡金属(Cd)和碱金属(K)等掺杂的慢闪烁成分抑制特性、内在机理和应用研究情况,并展望了所面临的挑战与机遇。  相似文献   

12.
采用固相烧结法制备一系列Er3+单掺与Er3+/Yb3+共掺0.96Na0.5Bi0.5TiO3-0.04CaTiO3(NBT-CT∶xEr3+/yYb3+,x=0.002~0.015,y=0.010)无铅压电陶瓷。通过X射线衍射仪和荧光光谱仪分别对样品的物相结构和上转换发光特性进行表征和分析。结果表明,样品的主晶相为NBT晶相。在波长为980 nm的近红外光激发下,Er3+单掺与Er3+/Yb3+共掺NBT-CT陶瓷均呈现强的以绿光为主的Er3+特征上转换发光。在NBT-CT∶xEr3+中,当x=0.010时上转换发光性能最佳;Yb3+能够起到敏化作用,明显增强Er3+的上转换发光强度。  相似文献   

13.
采用坩埚下降法生长了直径为25.4 mm的纯溴化铈晶体和0.1%、0.2%和0.5%(摩尔分数)Sr2+掺杂的溴化铈晶体。将所生长晶体加工成直径25.4 mm、厚度10 mm的坯件,并进行紫外和X射线激发荧光光谱、137Cs源激发多道能谱等测试。结果表明:Sr2+掺杂会导致晶体X射线激发下的发射光谱出现轻微红移,而随着Sr2+掺杂量的增加,晶体的能量分辨率依次提高,光输出依次降低;当Sr2+掺杂量为0.5%时,溴化铈晶体的能量分辨率最高,达3.83%@662 keV,但过高含量的Sr2+掺杂会造成晶体生长困难。综合考虑晶体性能和生长情况,Sr2+掺杂量为0.2%时较为适宜,所获得的ϕ25.4 mm×25.4 mm CeBr3∶0.2%Sr晶体封装件的能量分辨率为3.92%@662 keV。  相似文献   

14.
闪烁晶体材料一般可用于X射线、γ射线、中子及其他高能粒子的探测。经过100多年的发展,以闪烁晶体为核心的探测和成像技术已经在核医学、高能物理、安全检查、工业无损探伤、空间物理及核探矿等方面得到了广泛的应用。随着人们对闪烁晶体材料进一步深入的研究和科技的发展,现今市面上较好的LaBr3∶Ce等卤化物闪烁晶体由于生产成本过高、各向异性及脆性等缺点逐渐不能满足发展的需要,而钙钛矿型闪烁晶体材料由于其容易被改善的潮解性、低的生产成本、易于调整的生长条件以及良好的闪烁性能,逐步进入人们的视野。本文从晶体结构、性能、生长方法、发展趋势和应用前景等方面,着重介绍了ABX3(A+为Cs+,B2+为部分碱土金属离子,X-为非氟卤族元素离子)钙钛矿型闪烁晶体材料和K基钙钛矿结构闪烁晶体材料。最终,通过掺杂部分稀土元素和改善生长工艺等方法,即可得到光输出高、能量分辨率好,且成本较低、可广泛应用于市场的钙钛矿型闪烁晶体。  相似文献   

15.
采用自主设计改造的温梯炉,成功生长了不同浓度Ho3+、Y3+掺杂的CaF2及SrxCa1-xF2晶体,晶体尺寸约为ϕ15 mm×55 mm,生长周期约为6 d,能够实现7种不同浓度晶体的同步生长,并选取其中的4%(原子数分数)Ho,4%Y∶CaF2晶体进行分析,吸收测试表明,该晶体448 nm和643 nm处吸收峰的吸收截面分别是1.13×10-20 cm2和0.84×10-20 cm2, J-O理论分析得到了晶场强度参数Ωt(t=2、4、6)、辐射跃迁几率、荧光分支比和辐射寿命。在448 nm氙灯激发下,经计算得到该晶体在546 nm、650 nm 和752 nm处的发射截面分别为10.450×10-21 cm2、8.737×10-21 cm2和5.965×10-21 cm2,测得5F45F5能级的寿命分别为33.5 μs和17.7 μs。在640 nm LD泵浦激发下,经计算得到该晶体2 031 nm处发射截面为5.375×10-21 cm2,2 847 nm处发射截面为10.356×10-21 cm2,测得5I75I6 能级的寿命分别为4.37 ms 和1.85 ms。以上结果表明,多孔坩埚温梯法能够大大提高激光晶体稀土离子掺杂浓度筛选的效率,加快新型激光晶体材料的研发速度。  相似文献   

16.
Er3+-doped and Er3+–Yb3+ co-doped yttrium aluminum borate (YAB) single crystals have been grown by the top-seeded solution growth method using a new flux system, namely NaF–MoO3–B2O3. The Er3+ concentrations were 1.3 mol% for both single doped and co-doped crystals and the Yb3+ concentration in the Er3+–Yb3+ co-doped crystal was 20.0 mol% in the raw materials. The distribution coefficients of Er3+ single doped and Er3+–Yb3+ co-doped crystals were measured. The polarized absorption and fluorescence spectra of Er3+–Yb3+ co-doped crystal were recorded and compared with those of Er3+ single doped crystal. The results demonstrate that Er3+–Yb3+ co-doped YAB crystal is a potential candidate for 1.55 μm laser materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号