首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, polycrystalline materials of BaWO4 were synthesized by solid-state phase method, and a single crystal of BaWO4 was successfully grown along a and c-axis direction by using the Czochralski method. Up to 20×22×80 mm3 BaWO4 crystal was obtained, and X-ray powder diffraction results show that the as-grown BaWO4 crystal belongs to the scheelite structure. The effective segregation coefficients of Ba and W of the BaWO4 crystal were measured by the X-ray fluorescence method, and the effective segregation coefficients of Ba and W were near 1. The rocking curve from (2 0 0) diffraction plane of as-grown BaWO4 single crystal was measured on the High-resolution X-ray diffractometer D5005, and the full-width at half-maximum value was found to be 26.64′′ The density and hardness of the BaWO4 crystal was measured, the measured density was in agreement with the calculated result, and the Mohs hardness was about 4.  相似文献   

2.
The precipitation process of calcium carbonate (CaCO3) in the absence and presence of poly (N-vinyl-2-pyrrolidone) (PVP) was investigated using scanning electron microscopy, powder X-ray diffraction, and Fourier transform infrared spectroscopy methods at room temperature. The results indicate that PVP does not affect the polymorphy, but has influence on their morphology and size of CaCO3 crystals. With the addition of PVP, the amorphous CaCO3 could aggregate into bigger amorphous spherulites before transforming to crystalline state. Also, the transformation from the thermodynamically unstable vaterite to the stable calcite was investigated in the presence of PVP. As a particle-stabilizing agent, PVP molecules inhibit the formation of vaterite, however, promote the formation of calcite as well as the rate of the solvent-mediated transformation from vaterite to calcite.  相似文献   

3.
Anorthic SrHPO4 nanobelts and hexagonal Sr10O(PO4)6 nanorods were obtained by a simple hydrothermal method without adding any surfactant as template. The as-synthesized products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). TEM and HRTEM observations of the products revealed that the as-prepared SrHPO4 nanobelts and Sr10O(PO4)6 hexagonal nanorods are single crystals with their preferential growth direction along the normal of (1 0 0) and (0 0 1) planes, respectively.  相似文献   

4.
We report the liquid-phase epitaxial growth of Zn3P2 on InP (1 0 0) substrates by conventional horizontal sliding boat system using 100% In solvent. Different cooling rates of 0.2–1.0 °C/min have been adopted and the influence of supercooling on the properties of the grown epilayers is analyzed. The crystal structure and quality of the grown epilayers have been studied by X-ray diffraction and high-resolution X-ray rocking measurements, which revealed a good lattice matching between the epilayers and the substrate. The supercooling-induced morphologies and composition of the epilayers were studied by scanning electron microscopy and energy dispersive X-ray analysis. The growth rate has been calculated and found that there exists a linear dependence between the growth rate and the cooling rate. Hall measurements showed that the grown layers are unintentionally doped p-type with a carrier mobility as high as 450 cm2/V s and a carrier concentration of 2.81×1018 cm−3 for the layers grown from 6 °C supercooled melt from the cooling rate of 0.4 °C/min.  相似文献   

5.
Multiple branched SnO2 nanowire junctions have been synthesized by thermal evaporation of SnO powder. Their nanostructures were studied by transmission electron microscopy and field emission scanning electron microcopy. It was observed that Sn nanoparticles generated from decomposition of the SnO powder acted as self-catalysts to control the SnO2 nanojunction growth. Orthorhombic SnO2 was found as a dominate phase in nanojunction growth instead of rutile structure. The branches and stems of nanojunctions were found to be an epitaxial growth by electron diffraction analysis and high-resolution electron microscopy observation. The growth directions of the branched SnO2 nanojunctions were along the orthorhombic [1 1 0] and . A self-catalytic vapor–liquid–solid growth mechanism is proposed to describe the growth process of the branched SnO2 nanowire junctions.  相似文献   

6.
A novel synthetic route for the preparation of CdS nanowires has been developed. CdS nanowires with a diameter of ca. 4 nm have been successfully prepared by the microwave irradiation of a complex of cadmium-1-pyrrlidine dithio carboxylic acid ammonium (C5H12N2S2, APDTC) [Cd(APDTC)2]2 in an ethylenediamine solution. The CdS nanowires were characterized by powder X-ray diffraction pattern, transmission electron microscopy (TEM), UV-Vis spectroscopy, diffuse reflection spectroscopy and PL spectroscopy.  相似文献   

7.
Titanium nitride (TiN) films were obtained by the atmospheric pressure chemical vapor deposition method of the TiCl4–N2–H2 system with various flow rates of NH3 at 600°C. The growth characteristics, morphology and microstructure of the TiN films deposited were analyzed by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Without NH3 addition, no TiN was deposited at 600°C as shown in the X-ray diffraction curve. However, by adding NH3 into the TiCl4–N2–H2 system, the crystalline TiN was obtained. The growth rate of TiN films increased with the increase of the NH3 flow rate. The lattice constant of TiN films decreased with the increase of the NH3 flow rate. At a low NH3 flow rate, the TiN (2 2 0) with the highest texture coefficient was found. At a high NH3 flow rate, the texture coefficient of TiN (2 0 0) increased with the increase of the NH3 flow rate. In morphology observation, thicker plate-like TiN was obtained when the NH3 flow rate was increased. When the flow rate of NH3 was 15 sccm, Moiré fringes were observed in the TiN film as determined by TEM analysis. The intrinsic strain was found in the TiN film as deposited with 60 sccm NH3.  相似文献   

8.
Nucleation and growth of wurtzite AlN layers on nominal and off-axis Si(0 0 1) substrates by plasma-assisted molecular beam epitaxy is reported. The nucleation and the growth dynamics have been studied in situ by reflection high-energy electron diffraction. For the films grown on the nominal Si(0 0 1) surface, cross-sectional transmission electron microscopy and X-ray diffraction investigations revealed a two-domain film structure (AlN1 and AlN2) with an epitaxial orientation relationship of [0 0 0 1]AlN || [0 0 1]Si and AlN1 || AlN2 || [1 1 0]Si. The epitaxial growth of single crystalline wurtzite AlN thin films has been achieved on off-axis Si(0 0 1) substrates with an epitaxial orientation relationship of [0 0 0 1]AlN parallel to the surface normal and 0 1 1 0AlN || [1 1 0]Si.  相似文献   

9.
Fibrous barium carbonate (BaCO3/witherite) crystals 50–100 nm in diameter and several microns in length were grown on calcium carbonate (CaCO3) seeds at temperatures as low as 4 °C. The BaCO3 fibers were deposited onto calcite rhombs or CaCO3 films using the polymer-induced liquid-precursor (PILP) process, which was induced with the sodium salt of polyacrylic acid (PAA). The structure and morphology of the resultant fibers were investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected-area electron diffraction (SAED), and polarized light microscopy (PLM). Fibers were successfully grown on calcite seeds of various morphologies, with a range of barium concentrations, and PAA molecular weight and concentration. Two categories of fibers were grown: straight and twisted. Both types of fibers displayed single-crystalline SAED diffraction patterns, but after examining high-resolution TEM lattice images, it was revealed that the fibers were in fact made up of nanocrystalline domains. We postulate that these nanocrystalline domains are well aligned due to a singular nucleation event (i.e., each fiber propagates from a single nucleation event on the seed crystal) with the nanocrystalline domains resulting from stresses caused by dehydration during crystallization of the highly hydrated precursor phase. These BaCO3 fibers grown on calcite substrates further illustrate the robustness and non-specificity of the PILP process.  相似文献   

10.
Single crystals of BPO4 with sizes up to 15×10×12 mm3 were grown by top-seeded solution growth method using Li2O–Li4P2O7 as fluxes. The components volatilized from the melt were characterized by the method of X-ray powder diffraction. The defects of grown crystals have also been investigated. The measured ultraviolet cutoff edge of BPO4 was about 130 nm. Its density was 2.82 g/cm3 determined using drainage method.  相似文献   

11.
Calcium carbonate precipitates are prepared from a solution of CaCl2 and K2CO3 in the presence of polyacrilic acid. The effect of polyacrilic acid incorporation in the [25–80 °C] temperature range on crystal morphologies and CaCO3 precipitated polymorph concentrations are investigated using scanning electron microscopy and X-ray diffraction quantitative microstructural and phase analysis. Large changes in morphology and phase proportions are observed in the presence of polyacrylic acid, which strongly depend on the solution temperature. While crystallization of vaterite is favoured in the presence of polyacrilic acid up to 50 °C, it is largely destabilized at higher temperatures. Our process also enables the elaboration of particles in the range 10–20 nm.  相似文献   

12.
The morphology and chemistry of epitaxial MgB2 thin films grown using reactive Mg evaporation on different substrates have been characterized by transmission electron microscopy methods. For polycrystalline alumina and sapphire substrates with different surface planes, an MgO transition layer was found at the interface region. No such layer was present for films grown on MgO and 4-H SiC substrates, and none of the MgB2 films had any detectable oxygen incorporation nor MgO inclusions. High-resolution electron microscopy revealed that the growth orientation of the MgB2 thin films was closely related to the substrate orientation and the nature of the intermediary layer. Electrical measurements showed that very low resistivities (several μΩ cm at 300 K) and high superconducting transition temperatures (38 to 40 K) could be achieved. The correlation of electrical properties with film microstructure is briefly discussed.  相似文献   

13.
A solvothermal route has been developed to synthesize K2V3O8 nanorods via the reduction of V2O5 using ethanol as the reducing agent as well as the solvent at 200°C. X-ray diffraction and selected area electron diffraction analysis revealed that the as-synthesized products are of tetragonal structure K2V3O8. Transmission electron spectroscopy image showed that the obtained K2V3O8 comprises rod-like nanocrystallites. The formation mechanism of K2V3O8 was studied.  相似文献   

14.
The interesting biomimetic morphologenesis of CuS, containing urchin-like architecture and snowflake-like pattern can be separately obtained via heating different solutions. In our case, ethanol or the mixed solvent of ethanol/H2O containing CuCl2 and CS2 as raw materials in the presence of the surfactant additive cetyltrimethylammonium bromide (CTAB) have been used. The products were characterized by various techniques of XRD, SEM and ED. In the process, the solvent medium and the surfactant additive CTAB played very important roles in the formation of different biomimetic morphologies and the formation mechanisms were primarily discussed, respectively.  相似文献   

15.
Growth of dendritic cobalt nanocrystals at room temperature   总被引:3,自引:0,他引:3  
Dendritic cobalt nanocrystals have been synthesized by the reduction of Co2+ with hydrazine hydrate in ethanol via a room temperature solution synthetic route. The magnetic coercivity Hc of as-prepared cobalt dendrites came up to 500 Oe at room temperature. We chose different solvents to control the phases and morphologies of the cobalt products.  相似文献   

16.
Comprehensive microstructures of 7% cobalt-doped rutile TiO2 thin films grown on c-plane sapphire by pulsed laser deposition were characterized using transmission electron microscopy (TEM). The effects of oxygen pressure during growth on the Co distribution inside the films were investigated, and the detailed growth mechanism of both TiO2 and TiO2+Co was discussed. The similar oxygen sublattices and low mismatch between (1 0 0) rutile and c-plane sapphire favors the rutile phase. However, the three-fold symmetry of the substrate surface resulted in three rutile domain orientation variants, and they grow adjacent to each other. Cobalt was found to precipitate out as nanocrystals inside the TiO2 matrix as the growth pressure of oxygen was decreased. At 0.05 mTorr oxygen pressure, almost all of the Co segregates into crystallographically aligned nanocrystals with a particle size of 4.4±0.15 nm. All the samples have magnetic coercivity at room temperature. The magnetic moment per Co atom increased with decreased oxygen pressure, suggesting that the Co that replaced the Ti2+ in the TiO2 lattice does not have a large magnetic moment.  相似文献   

17.
Effects of relaxation of interfacial misfit strain and non-stoichiometry on surface morphology and surface and interfacial structures of epitaxial SrTiO3 (STO) thin films on (0 0 1) Si during initial growth by molecular beam epitaxy (MBE) were investigated. In situ reflection high-energy electron diffraction (RHEED) in combination with X-ray diffraction (XRD), atomic force microscopy (AFM), X-ray photoelectron spectrometry (XPS) and transmission electron microscopy (TEM) techniques were employed. Relaxation of the interfacial misfit strain between STO and Si as measured by in situ RHEED indicates initial growth is not pseudomorphic, and the interfacial misfit strain is relaxed during and immediately after the first monolayer (ML) deposition. The interfacial strain up to 15 ML results from thermal mismatch strain rather than lattice mismatch strain. Stoichiometry of STO affects not only surface morphology but interfacial structure. We have identified a nanoscale Sr4Ti3O10 second phase at the STO/Si interface in a Sr-rich film.  相似文献   

18.
Without the use of any extra surfactant or template, γ-MnOOH single crystalline nanowires were synthesized directly through the hydrothermal reaction between KMnO4 and toluene in distilled water at 180 °C for 24 h; and β-MnO2 single crystalline nanowires could be obtained just by calcination of the γ-MnOOH nanowires in air at 280 °C for 5 h. The as-prepared γ-MnOOH and β-MnO2 nanowires were characterized by X-ray powder diffraction, atomic absorption spectroscopy, Fourier transformed infrared spectroscopy, scanning electron microscope, transmission electron microscope, high-resolution transmission electron microscope and selected area electron diffraction.  相似文献   

19.
The growth of type-II textured tungsten disulfide (WS2) thin films by solid state reaction between the spray deposited WO3 and gaseous sulfur vapors with Pb interfacial layer has been studied. X-ray diffraction (XRD) technique is used to measure the degree of preferred orientation ‘S’ and texture of WS2 films. Scanning electron microscopy (SEM) and transmission electron microscopy techniques have been used to examine the microstructure and morphology. The electronic structure and chemical composition were studied using X-ray photoelectron spectroscopy (XPS). The use of Pb interfacial layer for the promotion of type-II texture in WS2 thin films is successfully demonstrated. The presence of (0 0 3 l), (where l=1, 2, 3, …) family of planes in the XRD pattern indicates the strong type-II texture of WS2 thin films. The crystallites exhibit rhombohedral (3R) structure. The large value of ‘S’ (1086) prompts the high degree of preferred orientation as well. The stratum of crystallites with their basal plane parallel to the substrate surface is seen in the SEM image. The EDS and XPS analyses confirm the tungsten to sulfur atomic ratio as 1:1.75. We purport that Pb interfacial layer enhances type-II texture of WS2 thin films greatly.  相似文献   

20.
MgO nanocrystals doped with Dy3+ have been synthesized by a combustion method. The synthesized sample is characterized by X-ray diffraction, transmission electron micrograph, Fourier transform infrared, and photoluminescence spectroscopy. The as-prepared MgO nanocrystals appear to be single cubic crystalline phase and the diameter is in the range of 20–25 nm. The hypersensitive transition (4F9/26H13/2 of Dy3+) emission is prominent in the emission spectra resulting from the low-symmetry local site at which Dy3+ ions locate. In addition, the dependence of the luminescence intensity on Dy3+ concentration is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号