首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用n型掺杂GaAs和TiO2组成两个相同的光子晶体,并把它们串联成一个复合光子晶体.数值计算表明,复合光子晶体在0.1~6 THz的频段出现了数个相同的透射峰,这些透射峰有如下特征:当n型掺杂GaAs的掺杂浓度>1020/m3并继续增加时,从高频到低频各透射峰的透射率依次下降直至消失.当周期数变化时,透射峰的个数M和周期数N间满足关系式M=N-1,且N一定时,各透射峰的形状和中心间距相同.入射角增加时,各透射峰中心的移动很小,且入射角越大,各透射峰的半峰全宽度越窄.介质的几何厚度增加时,各透射峰的透射率和半峰全宽度不变,仅是其中心位置红移.这些现象为此复合光子晶体实现太赫兹频段的多通道滤波提供了理论指导.  相似文献   

2.
梳状光子晶体滤波器的设计   总被引:3,自引:2,他引:1  
选用常见的LiF和Si为介质,并在考虑其色散关系的基础上,针对2000 nm的特定波长设计了一普通光子晶体,并将其串联成梳状光子晶体滤波器.数值计算表明该滤波器具有以下特征:在1800~2200 nm的波长范围内有多个滤波通道,普通光子晶体周期N增加,滤波通道数增加,间距变小.串联数M增加,通道位置和其透射率峰值均不变,透射谱原准禁带的底部逐渐下降.N或M增加,滤波通道对应的透射峰的半峰全宽变窄,滤波性能改善.入角度θ>10°时,各通道中心都有蓝移,原特定波长处的移动量较小,而两侧的移动量较大.入射角越大,这些变化越明显.  相似文献   

3.
为设计雾霾检测仪,由Si和LiF介质组成了一含缺陷层的光子晶体.在考虑两介质色散关系的基础上,利用传输矩阵法对其透射特性进行了研究.计算表明,此光子晶体在580 ~ 720 nm的范围内出现了一个透射率为1的缺陷模,此缺陷模有如下特征:缺陷层中折射率变化时,不影响缺陷模的透射率,只改变缺陷模的中心位置,且缺陷模的中心波长与缺陷层中的折射率有线性关系.两介质几何厚度分别增加时,缺陷模的透射率不变,但其中心位置红移.缺陷层的几何厚度单独变化时,仅影响缺陷模的中心位置,几何厚度增加,缺陷模中心红移,且移动率一定.缺陷模的以上特征为利用此类光子晶体设计雾霾检测仪提供了有益的指导.  相似文献   

4.
为设计糖溶液浓度检测仪,由LiF和Si介质组成了一含缺陷层的光子晶体.在考虑两介质色散关系的基础上,利用传输矩阵法对其透射特性进行了研究,计算表明,此光子晶体在400~ 700 nm的范围内出现了一个透射率为1的缺陷模,此缺陷模有如下特征:缺陷层中糖溶液浓度变化,不影响缺陷模的透射率和半峰全宽度,只改变缺陷模的中心位置,且糖溶液浓度与缺陷模的中心波长呈线性关系.两介质几何厚度分别或同时增加,缺陷模的透射率和半峰全宽度均不变,但其中心位置红移,移动率分别保持不变;LiF单独变化时,中心位置的移动率最小,LiF和Si同时变化时,移动率最大.不同介质几何厚度变化时,糖溶液浓度与缺陷模的中心波长呈不同的线性关系,但可通过重新定标来确定.  相似文献   

5.
一种基于光子晶体的多通道倍频滤波器   总被引:1,自引:0,他引:1  
本滤波器所用的光子晶体由ZnS和复折射率介质交替排列而成.利用传输矩阵法进行数值计算的结果表明,该光子晶体的透射谱具有以下特征:当两介质的光学厚度均为特征波长的四分之一时,在特征频率的偶数倍频附近出现了透射率为13.7的窄带透射峰,而其它位置均为禁带.周期数增加,透射峰位置稍有蓝移,峰值不变.入射角增大,透射峰位置不变,峰值下降.两介质的几何厚度同时变化时,透射峰的峰值保持不变,位置随之变化,几何厚度增加,透射峰位置蓝移,反之亦然.以上特征为此类光子晶体实现多通道倍频滤波提供了理论指导.  相似文献   

6.
掺Cd对ZnO薄膜光学性能的影响   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法在石英玻璃上制备了不同掺Cd浓度的ZnO薄膜.X射线衍射(XRD)结果表明,所制备的薄膜具有c抽择优取向,随着Cd掺杂浓度的升高,(002)峰向低角度方向移动.UV透射曲线表明,薄膜具有明显的紫外吸收边,通过改变Cd的掺入浓度,可以使吸收边向长波方向移动并被控制在一定范围内,从而使薄膜的禁带宽度连续可调;薄膜的光致发光(PL)谱显示,ZnO薄膜的PL谱是由紫外激子发光峰和蓝光发光带组成,通过掺入Cd可使紫外带边发射的峰位向低能端方向红移,这与透射谱中吸收带边的红移相吻合,由紫外发光峰得到的光禁带宽度和由透射谱拟合得到的光禁带基本一致.对不同掺杂浓度的薄膜进行了比较,发现Cd掺入量为8;摩尔分数时ZnO薄膜具有最佳的结构性能和发光性能.  相似文献   

7.
含磁单负材料一维光子晶体的隧穿模特性   总被引:1,自引:0,他引:1       下载免费PDF全文
构造了由磁单负材料A、普通材料B( SiO2)和C(TiO2)组成的(AB)NC(BA)N型一维光子晶体,数值计算结果表明在3100~3700 nm的波长范围内出现了6个隧穿模.这些隧穿模有不同于传统缺陷模的特征:入射角θ、C介质层的位置、光子晶体的周期数N和A、B两层介质的几何厚度都不影响各隧穿模的位置.在θ>46θ时,长波段的隧穿模消失.磁单负材料的介电常数变化,不影响隧穿模的个数和透射率.A、B两层介质的几何厚度变化量小于5;时,不影响各隧穿模的透射率,而C介质层的几何厚度对隧穿模的位置有影响.C介质层移动的单元数相同,隧穿模的变化也相同.  相似文献   

8.
表面局域态对一维声子晶体中水平剪切波传输特性的影响   总被引:1,自引:0,他引:1  
郁殿龙  刘耀宗  邱静 《人工晶体学报》2005,34(3):425-430,411
利用传递矩阵法,研究了一维声子晶体表面存在的表面局域态对水平剪切波传输特性的影响。由于表面局域态的存在,声波的透过率出现共振峰。共振峰的极值与入射角度和声子晶体层数有关,合适的入射角度和层数可以使声波完全透射。当入射角在一定范围内连续变化时,在较宽频率范围内均出现较大透过率。声子晶体的这一特性可以应用于高性能的阻抗匹配材料和声波滤波器中。  相似文献   

9.
采用溶胶-凝胶法在玻璃衬底上制备了N掺杂MgxZn1-xO薄膜.通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射光谱、光致发光(PL)谱对N掺杂MgxZn1-xO薄膜样品的晶体结构、表面形貌和光学性能进行了研究.XRD结果表明所有样品均形成了MgZnO合金薄膜,没有观察到其它氧化物的衍射峰.样品的结晶质量越差,样品的表面形貌越不规则,但样品在可见光的透射率越强,甚至达到了95;.样品的禁带宽度随Mg含量的增加而增加,随N含量的增加而减小.所有样品的光致发光谱均观察到强的400 nm发光和弱的可见发光.400 nm的发光强度随Mg含量的增加而减弱,随N含量的增加而增强,认为薄膜在400 nm的发光来源ZnO的激子复合.  相似文献   

10.
采用基于密度泛函理论的第一性原理平面波超软赝势法,研究了Mg/Cd(不同的Cd浓度)共掺杂ZnO的电子结构和光学性质.研究表明:Mg/Cd共掺杂ZnO,体系的晶胞尺寸变大,但结构稳定.当Mg/Cd为1:1时,吸收边略微发生蓝移.随Cd的掺杂浓度增加,导带部分逐渐下移,禁带宽度变窄,出现红移现象.除此之外体系的吸收率和反射率也减小.说明Mg/Cd共掺杂ZnO,不仅使得体系光学谱丰富,而且透射性增强.这对实验中制备出高透射率的材料具有一定的指导意义.  相似文献   

11.
把“啁啾”函数引入含左手材料的一维光子晶体中,且左手材料的介电常数和磁导率采用Lossy Dryde model,利用传输矩阵法研究了其透射谱.结果表明:在“啁啾”函数对材料几何厚度调制较小时,该光子晶体有完整的禁带,随着调制的加强,禁带宽度增加,但底部逐步抬高.在相同的调制下,磁、电等离子体频率的比值越大,禁带宽度越宽.入射角增加,TE模的禁带宽度不变而TM模的禁带宽度变窄,TE模和TM模均产生了角度隙,此角度隙的宽度随入射角增加而变宽,且TM模的变化大于TE模的.周期数N变化时,角度隙基本不变.nR的变化对禁带和角度隙的位置没有影响,但nR越小,禁带底部越高且圆,角度隙中透射峰峰值越大.  相似文献   

12.
HFCVD金刚石膜的形貌对红外透射率的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
本文测量HFCVD生长的金刚石膜的红外透射率.结果表明,膜中的缺陷、杂质和非金刚石相在透射谱中产生吸收带;膜表面的粗糙度和组织形貌对透射率有较大的影响.形核表面面对红外光源时,由于减少表面散射而透射率较高;定向或高取向膜的透射率高于混杂取向膜的透射率,表明晶格取向和晶界分布影响膜的透射性能.  相似文献   

13.
运用射频磁控溅射技术,改变氩、氮流量比(9/1 ~ 9/4)在玻璃衬底上获得ZnO∶N样品,采用XRD、紫外-可见分光光度计、傅里叶红外光谱仪及SEM对薄膜微结构和光学性能表征.结果发现∶N流量小,样品XRD峰强小,峰位不明显,紫外可见光光谱在320 ~780 nm波长区间透射率变化小;随着N流量的增加,样品XRD有(002)强单峰出现,在400 nm波长以下透射率急剧下降;当氩氮流量达到9/4,样品XRD出现双峰,紫外光透射率无明显变化.  相似文献   

14.
为了实现光的非互易效应,本文设计了四种周期性结构的一维光子晶体,利用基于旋磁材料的传输矩阵公式,计算结构的传输谱.通过外加磁场的作用,破坏系统的时间反演对称.研究发现时间反演对称的破缺必须结合空间结构对称的破缺,才可实现单向传输,并且这种对称性破坏的越严重,正反方向透射谱的分离度越高.旋磁材料作为一维光子晶体缺陷层,不仅结构简单,而且正向透射率接近100;.在入射角为45°时,正反方向透射消光比在缺陷层厚度为400 μm时达到最大值0.98.  相似文献   

15.
本文在聚吡咯并吡咯二酮-联噻吩(PDPP-2T,P1)的基础上,分别选取了吡啶(Py)、噻唑(Tz)、呋喃(THF)三种基团构造D-π-A共聚物P2、P3、P4,并通过密度泛函(DFT)第一性原理计算了四种聚合物的光电性质.计算结果表明,引入π桥后,能带曲率变大,有利于提升共聚物导电性,但带隙均增大;光吸收峰的短波吸收峰均发生红移,P2与P4的长波峰发生蓝移,而P3的长波峰变化不大,且长波吸收峰的强度均减弱.并用Bader电荷分析研究了三种π桥对D、A单元之间的电荷转移量的影响,发现引入π桥后,P2、P3电荷转移量减少,P4略微增加;且π桥在共聚物中既可以是得电子单元,又可以是失电子单元,表明引入π桥对D/A共聚物的电荷传输有一定影响.总之,用引入π桥的方法来提升共聚物的光电性质是一个需综合考虑的问题.  相似文献   

16.
利用射频磁控溅射法室温下在Si(100)衬底上制备了N掺杂的TiO2薄膜,并且采用x射线衍射(XRD)、X射线光电子能谱(XPS)和透射光谱对薄膜进行了表征.XRD结果表明在纯Ar和N2(33.3;)/Ar气氛下制备的TiO2-xNx薄膜均为单一的金红石相,薄膜结晶性良好,呈高度(211)择优取向,而在N2(50.0;)/Ar下制备的薄膜结晶性明显变差;对于N掺杂的TiO2薄膜,XPS表明部分N原子进入TiO2晶格,并且以N-Ti-O、N-O键以及间隙式N原子形式存在;透射光谱表明掺N后的TiO2薄膜吸收边发生了红移.  相似文献   

17.
为深入了解ZnMgO合金薄膜的结构与发光性能的关系,采用ZnO和MgO粉末球磨、冷压成型后再高温烧结的方式制靶,在石英基底上室温射频磁控溅射制备了Mg含量0%~8% (原子数分数) 的ZnMgO薄膜,然后于400 ℃空气退火。采用X射线衍射仪表征薄膜的晶体结构,场发射扫描电子显微镜及附带的X射线能谱仪(EDS)观测薄膜颗粒形貌和化学成分,荧光分光光度计测试光致发光(PL)谱。结果发现:ZnMgO合金膜为纤锌矿hcp结构的固溶体,随Mg含量增加,形貌由近似圆形变为圆形和无规则多边形混合型,原因是(002)晶厚失去主导且长大速率被(101)和(110)超过;PL谱出现一个强的紫光峰(390~393 nm)和一个微弱的近红外峰(758~765 nm);随Mg含量的增加,紫光峰位先蓝移后红移,近红外峰位则发生红移;400 ℃空气退火后,所有峰位红移,强度显著增大。对退火处理前后出现的紫光峰和近红外峰的来源和变化规律进行了机制探讨。  相似文献   

18.
为探究不同气氛退火处理对钨酸铅晶体光学性能的影响,对坩埚下降法生长的钨酸铅晶体分别在氧化气氛(O2)、惰性气氛(N2)、还原气氛(CO)下进行退火处理,测试了退火前后的透射光谱、吸收光谱、荧光光谱、光产额和衰减时间等光学性能参数.结果表明,N2气氛退火后钨酸铅晶体350 nm处的本征吸收略有降低而O2和CO气氛退火后略有增强,富O2气氛下退火的钨酸铅(PWO)晶体在420 nm处产生较强吸收峰.O2、N2气氛退火的钨酸铅晶体荧光光谱出现红移,CO气氛退火的钨酸铅晶体荧光强度得到明显改善,O2、N2、CO不同气氛退火的PWO晶体在1000 ns积分时间内的光产额分别为:10 p.e/MeV、25 p.e/MeV、38 p.e/MeV,衰减时间分别约为5.2 ns、4.5ns、4.4 ns.  相似文献   

19.
用量子理论新方法研究一维镜像光子晶体,将光的量子波动方程应用到一维光子晶体中,推导出量子传输矩阵,量子透射率和量子反射率公式.进一步研究缺陷层数目以及吸收介质和激活介质对一维光子晶体量子透射特性的影响,从而可以设计出光学滤波器、放大器和衰减器.当加缺陷层时,缺陷模出现尖锐峰,当缺陷层数目增加时,缺陷模个数增加,可设计为多通道光学滤波器.在缺陷层中加入吸收介质时,缺陷模强度减弱.在缺陷层中加入激活介质时,缺陷模强度增强,可设计为光学放大器和衰减器.  相似文献   

20.
利用薄膜光学理论中的特征矩阵法计算了所设计的光子晶体薄膜的反射光谱,利用镀膜法制备了光子晶体薄膜.同时进行了样品光谱曲线的测试,并对其在远红外波段的发射率进行了测试.测试结果表明,制备的光子晶体在10.6μm激光波长处的反射率较低,并且在除缺陷处的远红外波段的反射率较高,因此,可以实现远红外与10.6 μm激光兼容.但当入射角度的增加时,激光波长处的反射率有所上升,并向短波方向偏移;在除激光波长处的远红外波段的反射率也降低较多.因此,入射角度的增加对光子晶体兼容效果的影响逐渐增大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号