首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigates the effects of seed loading on the mean crystal size of the model substance, acetylsalicylic acid, crystallized from ethanol in a continuously seeded tubular crystallizer. A hot, highly concentrated ethanolic acetylsalicylic acid solution was mixed with an acetylsalicylic acid‐ethanol seed suspension. Subsequent cooling of the slurry in the tubing promoted supersaturation and hence crystal growth. The tubular shape of the 15 m‐long crystallizer with an inner diameter of 2 mm enabled narrow residence time distributions of the crystals in the pipe and excellent temperature control in the radial direction and along the tubing. Crystals entering the crystallizer had both identical growth conditions in each section and about the same time for crystal growth. Narrow crystal size distributions were achieved with decreasing differences in the volume‐mean‐diameter sizes of the seed and product crystals as seed loadings increased. Decreasing the seed size had a similar effect as increasing the seed loading, since in that case the same amount of seed mass resulted in more individual seed particles. Altering the arrangement of the coiled crystallizer with respect to spatial directions (horizontal, vertical) did not lead to a significantly different outcome. All experiments produced considerably larger product crystals in comparison to the seeds despite relatively short crystallization times of less than 3 min. Moreover, product mass gains of a few hundred percent at a g/min‐scale were achieved. Similarities in product crystal samples taken at different times at the outlet of the crystallizer showed that steady‐state conditions were rapidly reached in the continuous flow crystallization device. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The experimental results concerning continuous mass crystallization process in L(+)‐ascorbic acid – water system are presented and discussed. Influence of L(+)‐ascorbic acid concentration in a feeding solution and mean residence time of suspension in laboratory DT MSMPR crystallizer on product crystal size distribution as well as nucleation and growth kinetics were determined. Kinetic parameter values were evaluated on the basis of size–independent growth (SIG) kinetic model (McCabe's ΔL law). It was observed, that within the examined range of crystallizer productivity (120–1600 kg LAA crystals m–3h–1) crystal product population of mean size Lm from 0.2 to 0.3 mm and CV from 66.6 to 49% is withdrawn. Linear growth rate values present decreasing trend (from ca. 7 · 10–8 to ca. 6 · 10–8 m s–1) with the productivity increase (assuming constant mean residence time of suspension τ = 900 s). Occurrence of secondary nucleation within the circulated and mixed suspension, resulting from crystal attrition and breakage, was observed. The parameter values in design equation connecting linear growth rate and suspension density with nucleation rate were determined. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Understanding crystallization of phosphogypsum is generally of basic importance for industrial wet‐process phosphoric acid production. In this paper, measuring the phosphogypsum crystal size distribution during primary and secondary nucleation is reported. The results show that, secondary nucleation was occurred at 5 hr run time (12.5% solid content). Crystal growth rates were about 18.4 μm/hr at 2.5% solid content and about 4.5 μm at 30% solid content. At steady state (16 hr run time and 30% solid content), the mean diameter of the crystals and the average specific surface area are about 25 μm and 0.69 m2/g, respectively. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
The insensitive explosive 3‐Nitro‐1,2,4‐triazol‐5‐one (NTO) has been recrystallized from water in an effort to prepare crystals with smaller size and narrower distribution in a batch cooling crystallizer. Two mixing devices, i.e., a mechanically stirred system with and without ultrasound in aqueous media were employed to compare the mixing effect on the crystallization. Under ultrasound irradiation, the metastable zone width was significantly reduced by more than 2 fold and the crystal size was shifted from 140∼160 μm to 50∼70 μm with a narrower CSD compared to the mechanically stirred system. However in the mechanical stirrer, the mixing effect on NTO crystallization was negligible if the impeller speed was sufficient to suspend all crystals in the crystallizer. It was found that the crystal growth was not influenced by mixing. We suggest that the NTO crystals were formed by primary heterogeneous nucleation that is common in batch cooling system. Finally, the population balance model (PBM), with the empirical nucleation and growth kinetic expressions, was solved numerically to predict the crystal size and the CSD with batch time, and the results were in good agreement with the experimental data.  相似文献   

5.
The combined effects of supersaturation and Ba2+ on potassium dihydrogen phosphate (KDP) were investigated in batch cooling suspension crystallization. Growth size, morphology, and impurity Ba2+ adsorbed in the KDP crystals were measured with changing Ba2+ concentration and supersaturation. Significant changes in shapes and volume of the grown crystals have been observed. The results further confirmed that the size and shape of crystals were greatly determined by supersaturation. Ba2+ ions significantly modified the growth habit of KDP crystals. The concentration of Ba2+ ions adsorbed in the crystals increases with the increasing Ba2+ ions in the solutions and supersaturation. The foggy phenomena caused by the addition of Ba to the KDP solution were also described. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Attrition of crystals in industrial crystallization is the major source of secondary nucleation and has strong effects on product quality. This work describes attrition in industrial crystallizers using an empirical engineering model based on dimensionless groups describing crystal properties, suspension properties, and crystallizer geometry and operating conditions. Here the attrition rate of sodium chloride crystals in a small scale mixed‐suspension crystallizer is studied, varying the following parameters: impeller speed, parent crystal size, suspension density, draft‐tube impeller clearance, off‐bottom impeller clearance, impeller type, and impeller material. It was found that the attrition rate depends on most of the variables investigated. The direction of the dependence is predictable based on intuitive modeling. An empirical power law model based on dimensionless groups predicted by Buckingham‐Pi theory (using variables mentioned above) gives a good fit to the data.  相似文献   

7.
8.
Influence of Proteus mirabilis on the growth, morphology and size of struvite crystals in artificial urine has been studied. The growth in the presence of Proteus mirabilis shows formation of struvite crystals of more regular habits compared with that in the absence of bacteria. This implies that in the presence of Proteus mirabilis, struvite crystals grow with relative growth rates within smaller range of variability compared to the absence of bacteria. The results show that bacteria affect size and struvite morphology while the habit remains almost unchanged. It is suggested that the changes in struvite crystal morphology are induced by the presence of Proteus mirabilis. Microorganism's negatively charged residues interact electrostatically with positive ions which outcrop given surfaces and lead to an enhanced expression of these surfaces. This means that microorganisms actively mediate in growth processes. Therefore, the investigations provide evidence for the importance of biological regulation in crystallization process.  相似文献   

9.
Seed crystals of ammonium aluminum sulfate ((NH4)Al(SO4)2··12H2O) were grown in aqueous solution by cooling. The temperature of a crystallizer was lowered with no control by circulating cooling water through the jacket. It fell in an exponential manner. The effects of seed amount and size on the product crystal size distribution were examined. The product crystals obtained were of narrow and uni-modal size distribution with suppressed secondary nucleation if seed crystals were loaded more than a critical value. The critical value was determined and well compared with previously reported values for other material systems. This crystallization technique does not need any prior knowledge of the kinetics of crystal growth and nucleation. It is simple and robust, and can be easily applied to an existing crystallizer without installing any additional control systems.  相似文献   

10.
The investigation on the mechanism of nucleation and growth of crystals at organic‐inorganic interfaces is crucial for understanding biological and physiological calcification processes such as the formation of urinary stones. The effects of five different amino acids on the crystallization of calcium oxalate have been investigated at pH 4.5 and 37 °C in aqueous solutions in the batch type crystallizer. The products were characterized by Scanning Electron Microscopy (SEM), Fourier Transfer Infrared Spectroscopy (FT/IR) and X‐Ray diffraction (XRD) analysis. Crystal size distribution (CSD) and filtration rate measurements were done. In order to determine the adsorption characteristics of amino acids on the calcium oxalate crystal surfaces, zeta potential measurements were also done and discussed. The results indicate that in the presence of all investigated amino acids, calcium oxalate monohydrate (COM) crystals were preferentially produced, but the crystal morphology varied with amino acid types and concentrations. Various crystal morphologies such as elongated hexagonal, coffin or platy habits were observed. In the presence of all investigated amino acids, the calcium oxalate crystallized in a monohydrate form. Electrostatic/ionic interaction, different adsorption properties and special functional effects of amino acids led to find different crystal morphology. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Synthesis of silicalite‐1 powders and membranes from initially clear solutions with different tetrapropylammonium hydroxide or bromide concentrations was studied. While tetrapropylammonium bromide acts only as template, tetrapropylammonium hydroxide provides both the template and hydroxyl ions to the synthesis medium. The effects of template and hydroxyl ion concentration on the product yield, crystallization rate and crystal size were investigated. Pure and highly crystalline silicalite‐1 was obtained with all compositions. The nucleation time decreases from 100 h to 20 h and the crystal size decreases from 3.5 μm to 0.35 μm as the template amount x is increased from 5 to 30 moles at a batch composition of 80SiO2.xTPAOH.1500H2O at 95 °C. Yield of silicalite‐1 passes through a maximum at intermediate TPA concentration. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Calcium magnesium acetate (CMA) is considered as the best road deicer to replace the environmentally unacceptable NaCl and CaCl2. However, the high cost of CMA prohibits its widespread use. The present study is dealing with the investigation of a crystallization method for the production of deicing CMA crystals of desired physical properties and the elucidation of the conditions under which such a product can be formed. Extractive crystallization is promising for the low cost production of CMA crystals considering that acetic acid is produced by a biochemical method and removed from the fermentation broth in situ by organic extractant systems. In this method, this organic phase, which contains the acetate ions is contacted with an aqueous phase which is the source of calcium and magnesium ions. The extractive crystallization process resulted in the production of well‐formed, large, and non‐spherical crystals of calcium acetate (CA), magnesium acetate (MA), and calcium magnesium acetate double salt (CMADS). The crystal size was affected by the concentration of acetic acid in both the organic and aqueous phases, whereas the crystal type and hydration level were determined primarily by the acetic acid concentration in the aqueous phase. The molar ratio of the precursor salts (CaCO3/MgCO3) in the reaction mixture was found to be the major factor for determining the habit and Ca/Mg content of crystals. Crystallization of CMADS was favored at high concentrations of acetic acid in the aqueous phase and at higher temperatures as shown from supplementary evaporation‐to‐dryness experiments.  相似文献   

13.
Kidney stones consist of various organic and inorganic compounds. Calcium oxalate monohydrate (COM) is the main inorganic constituent of kidney stones. However, the mechanisms for the formation of calcium oxalate kidney stones are not well understood. In this regard, there are several hypotheses including nucleation, crystal growth and/or aggregation of formed COM crystals. The effect of some urinary species such as oxalate, calcium, citrate, and protein on nucleation and crystallization characteristics of COM is determined by measuring the weight of formed crystals and their size distributions under different chemical conditions, which simulate the urinary environment. Statistical experimental designs are used to determine the interaction effects among various factors. The data clearly show that oxalate and calcium promote nucleation and crystallization of COM. This is attributed to formation of a thermodynamically stable calcium oxalate monohydrate resulting from supersaturation. Citrate, however, inhibits nucleation and further crystal growth. These results are explained on the basis of the high affinity of citrate to combine with calcium to form soluble calcium citrate complexes. Thus, citrate competes with oxalate ion for binding to calcium cations. These conditions decrease the amount of free calcium ions available to form calcium oxalate crystals. In case of protein (mucin), however, the results suggest that no significant effect could be measured of mucin on nucleation and crystal growth. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Discrete and monodisperse submicron crystals of silicalite‐1 with a mean size of 0.3 μ m were synthesized from clear crystallization solutions. The effects of silica content, alkalinity of batch and the nature of silica source on the product yield, crystal morphology and particle size distribution were investigated. The crystal shape was sphere‐like or hexagonal twinned disks when silicic acid was the silica source. Change of silica source to sodium silicate solution leads to the formation of rounded‐edged‐hexahedron crystals. Silica content of batch does not influence crystal morphology. Alkalinity of clear crystallization solution has a strong effect both on the particle size distribution and yield of product. Increase of alkalinity caused bimodal particle size distribution and decrease of yield.  相似文献   

15.
Three types of biomaterials based on hydroxyapatite are synthesized and investigated. Hydroxyapatite nanocrystals or microcrystals precipitated from low-temperature aqueous solutions serve as the initial material used for preparing spherical porous granules approximately 300–500 μm in diameter. Sintering of hydroxyapatite crystals at a temperature of 870°C for 2 h or at 1000°C (for 3 h) + 1200°C (for 2 h) brings about the formation of solid ceramics with different internal structures. According to the electron microscopic data, the ceramic material prepared at 870°C is formed by agglomerated hydroxyapatite nanocrystals, whereas the ceramics sintered at 1200°C (with a bending strength of the order of 100 MPa) are composed of crystal blocks as large as 2 μm. It is established that all the biomaterials have a single-phase composition and consist of the hydroxyapatite with a structure retained up to a temperature of 1200°C.  相似文献   

16.
The approximation of a well mixed reactor is prevalent when it comes to the modeling of a crystallization process. Since temperature, concentration, and mass content vary due to inhomogeneous mixing, this approximation is a very loose one. The continuously operated seeded tubular crystallizer system developed in our group overcomes obstacles like a slow response to changes in the outer parameters and inhomogeneous mixing. Therefore the applicable well mixed assumption facilitates detailed modeling of the crystallization process by means of population balance equations (PBE) coupled with mass and energy balances. Modeled results were validated by means of experiments. The amount of aggregation events during the crystallization could be quantified and it was proven that the growth of seeded crystals is almost exclusively responsible for solid mass uptake if the reactor is operated appropriately. The performed sensitivity analysis exposed which process settings should be maintained most accurately to avoid fluctuations in the product crystals’ quality attributes and to limit undesired nucleation events.  相似文献   

17.
Crystal growth is a process that only takes place under non‐equilibrium conditions and a necessary prerequisite is that the crystal is exposed to a phase that is supersaturated in the material the crystal is composed of, be it a solution, a vapour or a supercooled melt. In industrial mass crystallization the growth rate for a population of crystals (in suspension growth processes [1]) rarely exceeds mean linear velocities of 10‐7 ms‐1. Here we present a mass crystallization process which is accompanied by rapid crystal growth several orders of magnitude faster and into a region of solution that is without inherent supersaturation. The material investigated is a solid hydrate that exhibits a solution mediated phase transition to its anhydrous form in the presence of methanol [2]. The phase transition is initiated simply by placing an amount of hydrate crystals into the solvent and is characterized by the rapid emergence of needle‐shaped crystals. The needles emanate from the crystal faces of the hydrate crystals and grow into the solution, which is nominally free of the substance to be crystallized. The high growth rate of the crystals, which of the order of up to 10‐4 ms‐1 is surprising. Although rapid needle growth has been observed before [3‐9], to date a satisfactory explanation for needles growing under the abovementioned conditions is still outstanding. Based upon the topology of the crystals we propose a tentative mechanism for this phenomenon capable of explaining the unusually rapid growth and highlight those questions that need addressing in order to verify this mechanism. X‐ray powder diffraction is used to characterize the crystal phase of the needles; confocal fluorescence microscopy reveals that the needles are hollow. The width of these needles is between 0.5 and 5 μm, their length appears to be limited only by the amount of hydrate available for their formation. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
19.
The influence of calcium to phosphate (Ca/P) molar ratio on the extent of mineralization in a model (poly)acrylamide gel was investigated under simulated physiological conditions. We hypothesized that the optimal growth of hydroxyapatite crystals will take place at the stoichiometric Ca/P molar ratio of 1.67. Phosphate ions were incorporated during the polymerization of the gel and mineralization was initiated by submersion of the gel in calcium acetate solution. Ca/P molar ratios were varied in the range of 0.5–5.0. The mineralized gel was characterized by Raman spectroscopy, scanning electron microscopy (SEM) and mineral weight fraction analysis via ashing. Raman spectra captured across the bulk of the gels indicated the presence of mineral at the core section. The phosphate symmetric stretching peak was observed in the range of 955–960 cm−1 which is characteristic of hydroxyapatite. SEM images showed that crystals formed at Ca/P=2.0 were denser and larger in size than at other molar ratios. In agreement with SEM images, the dry weight fraction of mineral reached the maximum at the molar ratio of 2.0 and the extent of mineralization rapidly declined as the molar ratio diverged from 2.0. Also, the crystallinity of the mineral was optimum at the molar ratio of 2.0. Thus it appears that for effective mineralization, the molar ratio of the two ions needs to be in excess of the stoichiometric requirement, suggesting that ions are expended in processes other than the formation and growth of hydroxyapatite crystals. Therefore, the optimal level of mineralization in biomimetic-based growth of calcium phosphate crystals in sol–gel environment requires consideration of a range of molar ratios as opposed to using the molar ratios corresponding to that of the crystal species intended to grow.  相似文献   

20.
The thermal behavior of the bovine bone mineral and synthetic stoichiometric hydroxyapatite was investigated by X‐ray diffraction. The bone samples in solid (planar oriented pieces) and in powder form were examined to elucidate how the microstructural and textural properties of bone mineral are modified under heating. As could be expected, the thermal behavior of the bone mineral depends not only on the structural distortions, but also on the crystal habit, texture and ordering of biocrystals in tissue. The temperature growth of biogenic apatite crystals, unlike synthetic hydroxyapatite, is seen to be nonmonotonic and multi‐staged. At 600 to 700°C the biomineral crystallites grow rapidly due to disappearance of the mosaic structure as the lattice imperfections are annealed. After heating between 700°C and 900°C the bone mineral appears to be composed of roughly equidimensional ≥200 nm crystals. The further growth of the crystals in the range from 900 to 1300°C occurs by the mass transport mechanism, supporting the idea that the bone mineral is not a discrete aggregation of crystals, but rather a continuous mineral phase with direct crystal‐crystal bonding. Estimates are presented to show the important role of the surface mass transport mechanism in the growth of apatite crystals. The material obtained by heating a cortical bone fragment between 900°C and 1300°C turns out to be composed of two crystal types: crystals oriented along the bone axis (major morphology) and those of differing shape and orientation (minor morphology). The heating‐induced variations in the longitudinal and transverse dimensions of differing‐morphology crystals are found to be coherent. Small amounts of CaO, MgO and other crystalline phases are seen to be formed in the bone mineral under heating. © 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号