首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
丁坝结构广泛应用于水利工程中,用以调整水流和护滩固堤,维护优良的水道通航条件。针对单丁坝局部水流,基于非结构网格,采用有限体积法(FVM),建立了三维自由表面水流模型,湍流模型采用S-A一方程模型。针对非淹没、正挑单丁坝,开展了系列Fr数条件下的水流模拟。重点分析丁坝局部流动结构,探讨丁坝坝根处局部涡系演化等特征,研究了丁坝下游回流区长度和宽度的变化,总结了丁坝引起的剪切流的沿程变化特征。  相似文献   

2.
采用动态亚格子模式和浸没边界法,对宽浅槽道中的丁坝群绕流的水动力学特性进行了三维大涡模拟研究. 利用丁坝绕流,试验中采用粒子图像测速仪(particle image velocimetry, PIV)测量的试验中自由水面处的时间平均流速和湍动强度数据对模型进行率定,结果表明计算结果与试验数据吻合良好. 丁坝长度与丁坝之间距离的比值L/D对丁坝周围的水流流动形式、湍流强度、涡量分布有显著影响. 在L保持不变并且L/D较大时,丁坝之间的距离D较小,这限制了混合层的发展,因此混合层中的湍动强度和涡量都较小;同时丁坝之间的回流区的流线形式也发生明显变化. 此外,还给出了涡体在丁坝坝头附近产生,发展并向下游输运的动态过程.  相似文献   

3.
局部冲刷的三维数值模拟可预测水力冲刷的破坏程度和破坏机制,进而提供更加合理的工程措施以减轻或避免局部冲刷造成的工程破坏。基于有限体积法和非结构化的计算网格构建了以水动力学模型、泥沙冲淤和河床变形方程为基础的三维局部冲刷数值模型。水动力学模型中的湍流模型为剪切应力SST k-ω输运模型,泥沙冲淤以底床切应力大小和分布为基础,水沙模型的耦合采用单向弱耦合方式。首先,通过ANSYS-FLUENT软件数值计算水动力学模型后,将水力特性数据单向传递至泥沙模块,并应用UDF函数二次开发实现泥沙模型的数值计算。利用动网格技术重构因河床地形更新引起的变形网格。与动床圆柱冲刷和丁坝局部冲刷的试验结果进行比较,验证了局部冲刷数值模型的可靠性。从平衡冲深时的冲刷深度和冲坑内水流特性等结果的对比可以看出,该数值模型成功地模拟出最终冲刷地形和形态,并能捕捉不同时刻的三维地形变化。根据数值模型的建立及应用结果分析主要得到以下结论,以切应力观点为基础开发该模型时,具有简易性和较强的可靠性;单元体泥沙通量的重构和床面坡度等因素均影响模型的精度;FLUENT软件提供的动网格技术能较好重构小变形网格,但是重构因地形变化引起的大变形网格时略显不足。  相似文献   

4.
采用两相流混合模型,并选取RNG k-ε湍流模型封闭两相流时均方程,对梯型断面明渠非淹没式丁坝绕流水力特性进行了三维数值模拟。采用有限体积法离散计算区域,求解速度与压力耦合方程组时使用半隐式SIMPLE(Semi-Implicit Method for Pressure-Linked Equations)算法,模拟自由水面时采用了VOF(Volume of Fluid)法。对丁坝后不同的回流长度进行了分析比较,并将模拟结果与实测资料进行了对比验证,结果表明两者吻合较好,相对误差小于8%,说明该模型能够很好地模拟明渠丁坝绕流的水力特性分布规律。  相似文献   

5.
基于考察泥沙运动的细观行为特征,采用离散单元法(DEM)模拟泥沙颗粒运动,结合带自由表面的水动力学计算模型,建立了CFD-DEM耦合数值模型。计算程序开发基于Fortran语言来实现。耦合模型中实现了硬球模型和软球模型两种颗粒碰撞模型,应用范围较广。作为自由表面水流与泥沙颗粒流数值模型的初步研究,在模型建立的基础上,对模型做了基本的验证。分别通过单颗粒静水沉降和混合颗粒群分选两个计算工况,验证了模型的正确性及模拟精度。该耦合模型可进一步丰富带自由表面水流条件下泥沙运动的研究手段。  相似文献   

6.
连铸结晶器内部流场及熔渣卷入的数值模拟   总被引:1,自引:0,他引:1  
针对连铸结晶器内部流场及熔渣卷入过程 ,提出了两方程k -ε湍流模型和充填法数值计算模型 ,并采用硅油 /水模拟体系代替熔渣 /钢液体系 ,进行了模拟试验和数值计算。对充气造成的浸入式水口水流脉动的影响进行分析。计算结果与试验结果符合良好 ,表明本文所采用的数值模拟方法是适用的  相似文献   

7.
以非局部弹性理论为基础,考虑了碳纳米管的小尺度效应,采用欧拉-伯努利梁模型给出了单层碳纳米管的动力学控制方程.研究了小尺度效应对振动简支单层碳纳米管边界条件的影响,并通过具体算例与经典连续介质理论的简支边界条件进行比较.结果表明:简支条件下考虑小尺度效应的非局部弹性理论和经典连续介质理论的边界条件具有同一性.  相似文献   

8.
通过求解一个第二类Fredholm方程,得到了基于非局部塑性软化模型的应变局部化问题理论解,结果表明,只有在当采用过非局部修正形式的非局部塑性软化模型才能得到应变局部化解,且得到的塑性应变分布和荷载响应依赖于所引入的特征长度及过非局部权参数。通过一维应变局部化有限元数值解,验证了非局部理论的引入能克服计算结果的网格敏感...  相似文献   

9.
针对飞秒激光辐照硅薄膜的非平衡声子能量输运建立了声子辐射输运模型,并采用改进的特征线法进行了数值模拟。在同时满足时间和空间微尺度的条件下,声子在远小于平均自由程的区域内获得能量,主导能量输运的方式是弹道式而不是扩散式。热波速度与薄膜中的声子声速相近,热传播方向上的声子能量输运主导了其它方向,因而弹道极限下的热波传播速度等于声子声速。  相似文献   

10.
混凝土单轴受拉的非局部本构模型   总被引:1,自引:0,他引:1  
混凝土受拉本构行为存在很强的局部软化现象,使得单轴受拉试验无法给出应力-应变关系,而只能给出应力-位移关系。本文根据内变量理论和等效应变假设建立了基于真实应变的混凝土单轴受力本构方程,并根据Weibull分布可以描述混凝土等脆性材料断裂过程的试验现象,建立了关于弹性应变的损伤演化规律。然后,通过假设平均应变与真实弹性应变的函数关系,在应力-平均应变的本构关系中采用平均弹性应变以描述其非局部行为,而在材料的损伤演化规律中采用真实弹性应变以描述其局部行为,由此建立了单轴受拉荷载条件下的非局部本构模型。最后,对一个单调受拉试验和一个反复受拉试验的仿真结果表明所提出的非局部本构模型可以准确地模拟试验结果。  相似文献   

11.
A convection–diffusion model for the averaged flow of a viscous, incompressible magma through an elastic medium is considered. The magma flows through a dike from a magma reservoir to the Earth’s surface; only changes in dike width and velocity over large vertical length scales relative to the characteristic dike width are considered. The model emerges when nonlinear inertia terms in the momentum equation are neglected in a viscous, low-speed approximation of a magma flow model coupled to the elastic response of the rock.Stationary- and traveling-wave solutions are presented in which a Dirichlet condition is used at the magma chamber; and either a (i) free-boundary condition, (ii) Dirichlet condition, or (iii) choked-flow condition is used at the moving free or fixed-top boundary. A choked-flow boundary condition, generally used in the coupled elastic wave and magma flow model, is also used in the convection–diffusion model. The validity of this choked-flow condition is illustrated by comparing stationary flow solutions of the convection–diffusion and coupled elastic wave and magma flow model for parameter values estimated for the Tolbachik volcano region in Kamchatka, Russia. These free- and fixed-boundary solutions are subsequently explored in a conservative, local discontinuous Galerkin finite-element discretization. This method is advantageous for the accurate implementation of the choked flow and free-boundary conditions. It uses a mixed Eulerian–Lagrangian finite element with special infinite curvature basis function near the free boundary and ensures positivity of the mean aperture subject to a time-step restriction. We illustrate the model further by simulating magma flow through host rock of variable density, and magma flow that is quasi-periodic due to the growth and collapse of a lava dome.  相似文献   

12.
Fluid banks sometimes form during gravity-driven counter-current flow in certain natural reservoir processes. Prediction of flow performance in such systems depends on our understanding of the bank-formation process. Traditional modeling methods using a single capillary pressure curve based on a final saturation distribution have successfully simulated counter-current flow without fluid banks. However, it has been difficult to simulate counter-current flow with fluid banks. In this paper, we describe the successful saturation-history-dependent modeling of counter-current flow experiments that result in fluid banks. The method used to simulate the experiments takes into account hysteresis in capillary pressure and relative permeabilities. Each spatial element in the model follows a distinct trajectory on the capillary pressure versus saturation map, which consists of the capillary hysteresis loop and the associated capillary pressure scanning curves. The new modeling method successfully captured the formation of the fluid banks observed in the experiments, including their development with time. Results show that bank formation is favored where the pc-versus-saturation slope is low. Experiments documented in the literature that exhibited formation of fluid banks were also successfully simulated.  相似文献   

13.
Recent developments in identifying Lagrangian coherent structures from finite-time velocity data have provided a theoretical basis for understanding chaotic transport in general flows with aperiodic dependence on time. As these theoretical developments are extended and applied to more complex flows, an accurate and general numerical method for computing these structures is needed to exploit these ideas for engineering applications. We present an unstructured high-order hp/spectral-element method for solving the two-dimensional compressible form of the Navier–Stokes equations. A corresponding high-order particle tracking method is also developed for extracting the Lagrangian coherent structures from the numerically computed velocity fields. Two different techniques are used; the first computes the direct Lyapunov exponent from an unstructured initial particle distribution, providing easier resolution of structures located close to physical boundaries, whereas the second advects a small material line initialized close to a Lagrangian saddle point to delineate these structures. We demonstrate our algorithm on simulations of a bluff-body flow at a Reynolds number of Re = 150 and a Mach number of M = 0.2 with and without flow forcing. We show that, in the unforced flow, periodic vortex shedding is predicted by our numerical simulations that is in stark contrast to the aperiodic flow field in the case with forcing. An analysis of the Lagrangian structures reveals a transport barrier that inhibits cross-wake transport in the unforced flow. The transport barrier is broken with forcing, producing enhanced transport properties by chaotic advection and consequently improved mixing of advected scalars within the wake.  相似文献   

14.
区别于基于半空间理论的传统直齿轮弹流润滑模型,本文基于有限长空间解建立考虑轮齿自由端面影响的渐开线直齿轮有限长弹流润滑模型. 采用叠加法构造自由端面,矩阵法和半解析法求解自由端面的影响,快速傅里叶变换算法加速齿面弹性变形计算;采用统一Reynolds方程法求解油膜压力和油膜厚度. 以啮合节点为特征位置,分析比较不同压力角下自由端面对直齿轮弹流润滑的影响. 结果表明:与半空间模型比较,考虑自由端面后端面峰值压力降低,压力分布更均匀,最小油膜厚度增大;增大轮齿压力角,节点压力水平减小,油膜厚度增大;当压力角不同时,自由端面对齿轮弹流润滑压力峰值的影响基本相当,对最小膜厚的影响较大.   相似文献   

15.
High‐order accurate DG discretization is employed for Reynolds‐averaged Navier–Stokes equations modeling of complex shock‐dominated, unsteady flow generated by gas issuing from a shock tube nozzle. The DG finite element discretization framework is used for both the flow field and turbulence transport. Turbulent flow in the near wall regions and the flow field is modeled by the Spalart–Allmaras one‐equation model. The effect of rotation on turbulence modeling for shock‐dominated supersonic flows is considered for accurate resolution of the large coherent and vortical structures that are of interest in high‐speed combustion and supersonic flows. Implicit time marching methodologies are used to enable large time steps by avoiding the severe time step limitations imposed by the higher order DG discretizations and the source terms. Sufficiently high mesh density is used to enable crisp capturing of discontinuities. A p ? type refinement procedure is employed to accurately represent the vortical structures generated during the development of the flow. The computed solutions showed qualitative agreement with experiments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
The water distribution in the capillary fringe (CF) reflects the interaction of a strongly wetting fluid in a heterogeneous porous medium. Field profiles of gravimetric water content of the CF for a 30m deep, sandy, phreatic aquifer in Israel are critically analyzed in the context of the possible wetting and drainage processes in these sediments. A highly plausible explanation of the profiles is based on the spatial configuration of the CF surface determined from a model of the movement of water within the porous medium. The structural types of CF that can arise from a number of competing pore-scale displacement mechanisms, in the presence of gravity, are characterized by the model. We differentiate between two generic types of CF structures: a tenuous invasion-percolation type and a compact type. Flow, in response to a horizontal pressure gradient, associated with each structure is analyzed. Our interpretation of the field data supports the compact structure with a spatial variation in the height of the CF surface, above the water table, on the order of 1m. In this compact structure horizontal flow is characterized by stagnant regions in the CF above a critical height h c and flow only for regions below h c . The field water content (at h c ) may be used to predict the onset of lateral water flow in the CF.  相似文献   

17.
E. Erdem  K. Kontis 《Shock Waves》2010,20(2):103-118
The flow field resulting from a transverse injection through a slot into supersonic flow is numerically simulated by solving Favre-averaged Navier–Stokes equations with κω SST turbulence model with corrections for compressibility and transition. Numerical results are compared to experimental data in terms of surface pressure profiles, boundary layer separation location, transition location, and flow structures at the upstream and downstream of the jet. Results show good agreement with experimental data for a wide range of pressure ratios and transition locations are captured with acceptable accuracy. κω SST model provides quite accurate results for such a complex flow field. Moreover, few experiments involving a sonic round jet injected on a flat plate into high-speed crossflow at Mach 5 are carried out. These experiments are three-dimensional in nature. The effect of pressure ratio on three-dimensional jet interaction dynamics is sought. Jet penetration is found to be a non-linear function of jet to free stream momentum flux ratio.  相似文献   

18.
Scalar transport from a point source in flows over wavy walls   总被引:1,自引:0,他引:1  
Simultaneous measurements of the velocity and concentration field in fully developed turbulent flows over a wavy wall are described. The concentration field originates from a low-momentum plume of a passive tracer. PLIF and digital particle image velocimetry are used to make spatially resolved measurements of the structure of the scalar distribution and the velocity. The measurements are performed at three different Reynolds numbers of Re b = 5,600, Re b = 11,200 and Re b = 22,400, respectively, based on the bulk velocity u b and the total channel height 2h. The velocity field and the scalar field are investigated in a water channel with an aspect ratio of 12:1, where the bottom wall of the test section consists of a train of sinusoidal waves. The wavy wall is characterized by the amplitude to wavelength ratio α = 0.05 and the ratio β between the wave amplitude and the half channel height where β = 0.1. The scalar is released from a point source at the wave crest. For the concentration measurements, Rhodamine B is used as tracer dye. At low to moderate Reynolds number, the flow field is characterized through a recirculation zone which develops after the wave crest. The recirculation zone induces high intensities of the fluctuations of the streamwise velocity and wall-normal velocity. Furthermore, large-scale structures are apparent in the flow field. In previous investigations it has been shown that these large-scale structures meander laterally in flows over wavy bottom walls. The investigations show a strong effect of the wavy bottom wall on the scalar mixing. In the vicinity of the source, the scalar is transported by packets of fluid with a high scalar concentration. As they move downstream, these packets disintegrate into filament-like structures which are subject to strong gradients between the filaments and the surrounding fluid. The lateral scale of the turbulent plume is smaller than the lateral scale of the large-scale structures in the flow field and the plume dispersion is dominated by the structures in the flow field. Due to the lateral meandering of the large-scale structures of the flow field, also the scalar plume meanders laterally. Compared to turbulent plumes in plane channel flows, the wavy bottom wall enhances the mixing effect of the turbulent flow and the spreading rate of the scalar plume is increased.  相似文献   

19.
Among the various hybrid methodologies, Speziale's very large eddy simulation (VLES) is one that was proposed very early. It is a unified simulation approach that can change seamlessly from Reynolds Averaged Navier–Stokes (RANS) to direct numerical simulation (DNS) depending on the numerical resolution. The present study proposes a new improved variant of the original VLES model. The advantages are achieved in two ways: (i) RANS simulation can be recovered near the wall which is similar to the detached eddy simulation concept; (ii) a LES subgrid scale model can be reached by the introduction of a third length scale, that is, the integral turbulence length scale. Thus, the new model can provide a proper LES mode between the RANS and DNS limits. This new methodology is implemented in the standard k ? ? model. Applications are conducted for the turbulent channel flow at Reynolds number of Reτ = 395, periodic hill flow at Re = 10,595, and turbulent flow past a square cylinder at Re = 22,000. In comparison with the available experimental data, DNS or LES, the new VLES model produces better predictions than the original VLES model. Furthermore, it is demonstrated that the new method is quite efficient in resolving the large flow structures and can give satisfactory predictions on a coarse mesh. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Two different porous building materials have been previously measured and analysed (El-Abd and Milczarek, 2004, IEEE Trans. Nuclear Sci.; El-Abd et al., 2004, J. Phys. D) using neutron radiography to measure the water front position over time. The results from this experimental approach show a similar behaviour to the predictions from idealised model structures, in that there is a cross over point where the fastest rate of absorption at first favours the finer structure material and at later times favours the coarser pore structure material. The computer model, Pore-Cor** is used to generate the idealised structures and the absorption of fluid into porous structures follows a Bosanquet wetting algorithm for fluids undergoing both inertial and viscous dynamical flow (Ridgway and Gane, 2002, Colloids Surfaces A: Physicochem. Eng. Aspects 206, 217–239.). The model structures comprise cubic pores connected by cylindrical throats on a three-dimensional 10× 10× 10 position matrix simulating the void structure of porous media by fitting as closely as possible the modelled mercury intrusion curve to that of the experimentally determined mercury intrusion curve of the actual sample. They show the transition that occurs in the absorption behaviour from the linear t-dependent short timescale inertial regime to the familiar √t Lucas-Washburn viscous regime. The simulated absorption algorithm applied to these model structures also shows a fluid position behaviour that replicates qualitatively, given the limitation of representative sample volume, the cross over seen experimentally. Furthermore, the existence of a preferred wetting path is demonstrated in the experimental as well as the model wetting front behaviour. In the case of the structure containing the broader range of pore sizes, the wetting front is considered to proceed by a network of optimal size combinations (inertial wetting versus viscous drag) and connectivity, leaving some pores behind the wetting front unfilled or only partially filled. ** Pore-Cor is a software program of the Environmental and Fluids Modelling Group, University of Plymouth, Devon, PL4 8AA, U.K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号