首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
为抑制跨超声速风洞扩散段的分离,提出了一种较为完备的设计方法。由于影响扩散段性能的参数较多,完全通过试验方法进行设计的成本过高,该方法通过数值模拟,结合适当的边界条件,详细描述了扩散段角度、分流锥角度与长度、孔板开孔率对扩散段性能的影响;从数值模拟的结果可以看出,孔板开孔率和扩开角对扩散段性能有显著影响,通过比较得出较为合理的参数匹配,提高了扩散段的防分离性能,并改善了出口气流质量。数值结果与试验结果结论一致,表明本文所用的方法用于扩散段气动设计是可行的,为数值模拟方法应用于风洞部段气动设计创造了一定的条件。  相似文献   

2.
Modifications of the turbulent separated flow in an asymmetric three-dimensional diffuser due to inlet condition perturbations were investigated using conventional static pressure measurements and velocity data acquired using magnetic resonance velocimetry (MRV). Previous experiments and simulations revealed a strong sensitivity of the diffuser performance to weak secondary flows in the inlet. The present, more detailed experiments were conducted to obtain a better understanding of this sensitivity. Pressure data were acquired in an airflow apparatus at an inlet Reynolds number of 10,000. The diffuser pressure recovery was strongly affected by a pair of longitudinal vortices injected along one wall of the inlet channel using either dielectric barrier discharge plasma actuators or conventional half-delta wing vortex generators. MRV measurements were obtained in a water flow apparatus at matched Reynolds number for two different cases with passive vortex generators. The first case had a pair of counter-rotating longitudinal vortices embedded in the boundary layer near the center of the expanding wall of the diffuser such that the flow on the outsides of the vortices was directed toward the wall. The MRV data showed that the three-dimensional separation bubble initially grew much slower causing a rapid early reduction in the core flow velocity and a consequent reduction of total pressure losses due to turbulent mixing. This produced a 13% increase in the overall pressure recovery. For the second case, the vortices rotated in the opposite sense, and the image vortices pushed them into the corners. This led to a very rapid initial growth of the separation bubble and formation of strong swirl at the diffuser exit. These changes resulted in a 17% reduction in the overall pressure recovery for this case. The results emphasize the extreme sensitivity of 3D separated flows to weak perturbations.  相似文献   

3.
This is a review of experimental studies of turbulent flow in a conical diffuser by eight Ph.D. students, eleven M.Sc. students, one M.Eng. student, and myself in the past 29 years. During this time, two conical diffusers were constructed: the first was of cast aluminum construction, and the second was of plastic fabrication. These two diffusers were basically the same in geometry except that the pipe section was constructed as an integral part of the plastic diffuser to avoid the lip at the junction of the inlet pipe and the diffuser. The conical diffuser had a total divergence angle of 8°, an area ratio of 4:1, and an inlet diameter of 0.1016 m (4 in.).

The flow at the inlet of the diffuser was usually fully developed pipe flow, but sometimes it was boundary layer grown on the pipe wall. Hot-wire and pulse-wire anemometry together with computer facilities were used to obtain the results of complex flow present in the conical diffuser. Mean velocity profiles were obtained throughout the diffuser, which in turn were used to obtain strain rates and their principal direction. Turbulence moments up to fourth order were measured. The results were used to assess momentum, turbulent kinetic energy, and shear stress equations. Other features such as instantaneous flow reversals in the wall region, relative strength of large eddies, extra strain rate, and the production of kinetic energy also were investigated to find the dynamical picture in the diffuser flow.  相似文献   


4.
Short round diffuser with a high area ratio and a permeable partition   总被引:1,自引:0,他引:1  
The parameters of a short round diffuser whose channel diameter increases threefold along a length equal to about half the inlet diameter, are experimentally investigated. The absence of flow separation in this diffuser is ensured by specially selecting the channel profile and mounting a hydraulic resistance in the form of a permeable partition at the diffuser outlet. The experiments were carried out at the inlet flow Mach numbers up to 0.2. When the flow at the diffuser entry is steady, an axisymmetric flow is formed immediately downstream of the entry. The static pressure in the flow that has passed through the diffuser increases by 20% of the ram pressure at the entry. There is a possibility of optimizing the diffuser parameters.  相似文献   

5.
离心风机子午通道内湍流场数值模拟   总被引:6,自引:0,他引:6  
由进风口-叶轮-无叶扩压器-蜗壳等部件组成的离心风机通道内流分析是非常复杂的,目前还只能是分别计算各部件内的流场,但必须考虑部件间的相互影响。本文采用轴对称N-S方程,根据三维叶轮通道计算给出的叶片力分布,求解了考虑叶片力的进风口-叶轮-无叶扩压器组成的子午通道问题,所得结果可用来给出三维叶轮通道计算的进口条件,并可用于优化设计进风口及叶轮前、后盘形状。该方法已得到实践检验。  相似文献   

6.
Jet pump diffuser performance is analyzed, both in terms of past experimental work dealing with the high inlet flow distortions involved and in the sense that this problem is amenable to predictive investigation by computational fluid dynamics techniques. In these highly nonuniform flow conditions, diffusers are seen to justify their inclusion in a jet pump design, for regaining static pressure downstream of the vacuum chamber, even though their performance in effectiveness terms is lowered by about two thirds at high inlet glow distortion levels. A satisfactory correlation has been found between outlet and inlet conditions and diffuser area ratio, extending well beyond past experimental published results for diffuser geometry and distorted inlet flows.  相似文献   

7.
Experiments were conducted for the flow in a straight-walled 3D diffuser fed by a fully developed turbulent duct flow. Previous work found that this diffuser has a stable 3D separation bubble whose configuration is affected by the secondary flows in the upstream duct. Dielectric barrier discharge plasma actuators were used to produce low-momentum wall jets to determine if the separation behavior could be modified by weak forcing. Actuators producing a streamwise force along the wall where separation occurred in the baseline flow had a relatively small effect. However, spanwise acting plasma actuators that produced a pair of streamwise vortices in the inlet section of the diffuser had a strong effect on the diffuser pressure recovery. The diffuser performance could be either improved or degraded depending on the actuation parameters, including the actuator modulation frequency, duty cycle, and drive voltage. Velocity profile measurements in the diffuser inlet showed that the streamwise vortices affect the uniformity of the streamwise mean velocity accounting for some of the performance changes. However, phase-locked hotwire measurements at the diffuser exit indicate that the periodic nature of the forcing also plays an important role for cases with enhanced pressure recovery.  相似文献   

8.
Results from an experimental study of flow behaviour at the inlet of a vaneless diffuser of a centrifugal compressor are presented. Measurements from a crossed hot-wire probe are given for operating points having inlet flow coefficients ranging from 0.006 to 0.019 at different Reynolds numbers. Instantaneous, time-averaged, and phase-averaged absolute velocity and flow angle at the diffuser inlet are deduced from the hot-wire signals after correction for mean density variations. These results show how flow behaviour varies in stable, rotating stall and surge regimes of compressor operation  相似文献   

9.
The paper presents a study of heat transfer between the turbulent airflow and the inner wall surface of an axial diffuser rotating around its longitudinal axis. Heat transfer was assessed through the measurement of a time-dependent temperature field of the diffuser inner wall surface. Measurements of the instantaneous flow velocity components were performed by a laser–Doppler anemometry system, which delivered information on mean velocity components as well as on the turbulence intensity. A significant increase of all three mean velocity components was observed near the rotating diffuser wall in comparison with a non-rotating diffuser. Temperature field measurements were carried out by means of infrared thermography. The experiment showed a significant dependence of the temperature field on the turbulent flowfield induced by diffuser rotation. A strong influence of the flow separation and reattachment on the temperature distribution was observed, while rotation was found to suppress the occurrence of flow separation from the diffuser wall. Properties of the velocity field such as turbulent kinetic energy were directly coupled with the temperature distribution in order to gain the information on how to enhance or reduce heat transfer by changing the integral parameters of the diffuser (e.g. rotation frequency or amount of flow).  相似文献   

10.
This paper constitutes an experimental study of the separation performances of a gas–liquid cylindrical cyclone (GLCC) separator that interests the oil industry. The global hydrodynamics behavior in the GLCC is characterized by flow visualization under various inflow operating conditions. The effect of the inlet nozzle design on the performances of the separator is studied by using three different nozzles, and it proves to be a key parameter. With an insufficient nozzle restriction, low swirl intensity is imparted to the flow. Due to inadequate centrifugal effects, liquid is prematurely carried over by the gas as flooding occurs in the separator upper part. High amounts of gas are also carried under by the liquid stream. On the other hand, with a too severe nozzle convergence, the important drag applied by the gas leads to liquid “short circuiting” the cyclone toward the gas outlet. In addition to the nozzle design, the separator performances are influenced by phenomena such as liquid bridging or the occurrence of the slug flow regime at the cyclone inlet. This paper leads to a better understanding of the links between the hydrodynamics in the GLCC and its operational limits, which is necessary to enable reliable scaling up tools.  相似文献   

11.
In many practical applications of conical diffusers, the flow is fed by an annular flow passage formed by a center body. Flow separation, which occurs if the center body ends abruptly, is undesirable because it degrades the diffuser performance. The present experiment utilizes magnetic resonance velocimetry to acquire three-component mean velocity measurements for a set of conical diffusers with an annular inlet. The results show strong coupling between the diffuser wall boundary layer development and the wake of the center body. Coanda blowing is used to mitigate the center body wake separation. The diffuser wall boundary layer is thick in the absence of the central separation bubble and separates when Coanda blowing is too strong.  相似文献   

12.
Large-Eddy Simulations are conducted on a centrifugal pump at design and reduced flow-rates for three diffuser geometries, to investigate the effect of changing the diffuser inlet angle on the overall performance and the pressure fields. In particular, pressure fluctuations are investigated, which affect the unsteady loads acting on the pump, as well as vibrations, noise and cavitation phenomena. The considered modification of the diffuser geometry is targeted at decreasing the incidence angle at the off-design flow-rate by rotating the stationary blades of the pump around their leading edge. Results are compared against those of an earlier study, where the same modification of the diffuser inlet angle was achieved by increasing also the radial gap between impeller and diffuser, whose blades were rotated relative to their mid camber location. The comparisons across cases demonstrate that the radial gap between the trailing edge of the impeller blades and the leading edge of the diffuser blades has a more profound influence on pressure fluctuations, compared to the angle of incidence on the diffuser blades of the flow coming from the impeller.  相似文献   

13.
Advanced Turbulence Modelling of Separated Flow in a Diffuser   总被引:1,自引:0,他引:1  
The paper describes an investigation into the predictive performance of linear and non-linear eddy-viscosity models and differential stress-transport closures for separated flow in a nominally two-dimensional, asymmetric diffuser. The test case forms part of a broader collaborative exercise between academic and industrial partners. It is demonstrated that advanced turbulence models using strain-dependent coefficients and anisotropy-resolving closure offer tangible advantages in predictive capability, although the quality of their performance can vary significantly, depending on the details of closure approximations adopted. Certain features of the flow defy resolution by any of the closures investigated. In particular, no model resolves correctly the flow near the diffuser's inclined wall immediately downstream of the inlet corner, which may reflect the presence of a “flapping” motion associated with a highly-localised process of unsteady separation and reattachment. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Two techniques that improve the aerodynamic performance of wind turbine airfoils are described. The airfoil S809, designed specially for wind turbine blades, and the airfoil FX60-100, having a higher lift-drag ratio, are selected to verify the flow control techniques. The flow deflector, fixed at the leading edge, is employed to control the boundary layer separation on the airfoil at a high angle of attack. The multi-island genetic algorithm is used to optimize the parameters of the flow deflector. The results indicate that the flow deflector can suppress the flow separation, delay the stall, and enhance the lift. The characteristics of the blade tip vortex, the wake vortex, and the surface pressure distributions of the blades are analyzed. The vortex diffuser, set up at the blade tip, is employed to control the blade tip vortex. The results show that the vortex diffuser can increase the total pressure coefficient of the core of the vortex, decrease the strength of the blade tip vortex, lower the noise, and improve the efficiency of the blade.  相似文献   

15.
激波风洞内超燃冲压发动机三面压缩进气道流场实验观测   总被引:2,自引:0,他引:2  
主要进行了超燃冲压发动机三面压缩进气道的实验观测。利用来流马赫数4.5的直通式激波风洞,考察了三组具有不同压缩角度的进气道模型内部的流场情况。实验观测手段为油流法、丝线法和高速纹影,同时,辅以数值模拟以有助于流场细节分析。纹影照片展示了进气道内部以激波边界层相互作用为主要影响因素的流场复杂结构,数值模拟也显示了相近的结果。油流技术与丝线法显示了近壁面处的流动图像,照片中可见激波、分离线、再附线等分界线位置。根据实验结果,可以推测唇口激波与进气道内边界层的相互作用及其引起的壁面分离是影响进气道内流动的主要因素。同时,尝试了利用抽吸方法减弱激波与边界层相互作用诱发的壁面流动分离,并取得一定结果。  相似文献   

16.
This paper investigates the flow pattern change in an annular jet caused by a sudden change in the level of inlet swirl. The jet geometry consists of an annular channel followed by a specially designed stepped‐conical nozzle, which allows the existence of four different flow patterns as a function of the inlet swirl number. This paper reports on the transition between two of them, called the ‘open jet flow high swirl’ and the ‘Coanda jet flow.’ It is shown that a small sudden decrease of 4% in inlet swirl results in a drastic and irreversible change in flow pattern. The objective of this paper is to reveal the underlying physical mechanisms in this transition by means of numerical simulations. The flow is simulated using the unsteady Reynolds‐averaged Navier–Stokes (URANS) approach for incompressible flow with a Reynolds stress turbulence model. The analysis of the numerical results is based on a study of different forces on a control volume, which consists of the jet boundaries. The analysis of these forces shows that the flow pattern change consists of three different regimes: an immediate response regime, a quasi‐static regime and a Coanda regime. The simulation reveals that the pressure–tangential velocity coupling during the quasi‐static regime and the Coanda effect at the nozzle outlet during the Coanda regime are the driving forces behind the flow pattern change. These physical mechanisms are validated with time‐resolved stereo‐PIV measurements, which confirm the numerical simulations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
A detailed experimental investigation of the effects of exit blade geometry on the part-load performance of low-head, axial flow propeller turbines is presented. Even as these turbines find important applications in small-scale energy generation using micro-hydro, the relationship between the layout of blade profile, geometry and turbine performance continues to be poorly characterized.The experimental results presented here help understand the relationship between exit tip angle, discharge through the turbine, shaft power, and efficiency. The modification was implemented on two different propeller runners and it was found that the power and efficiency gains from decreasing the exit tip angle could be explained by a theoretical model presented here based on classical theory of turbomachines. In particular, the focus is on the behaviour of internal parameters like the runner loss coefficient, relative flow angle at exit, mean axial flow velocity and net tangential flow velocity.The study concluded that the effects of exit tip modification were significant. The introspective discussion on the theoretical model’s limitation and test facility suggests wider and continued experimentation pertaining to the internal parameters like inlet vortex profile and exit swirl profile. It also recommends thorough validation of the model and its improvement so that it can be made capable for accurate characterization of blade geometric effects.  相似文献   

18.
The results of an experimental investigation depicting the effects of swirl profile on confined flows in a sudden-expansion coaxial dump combustor are presented. Three swirlers (free vortex, forced vortex, and constant angle) with the same nominal swirl number were designed and fabricated to study the effects of swirl type on the isothermal dump combustor flow field. Imparting swirl to the inlet flow resulted in a considerable reduction of the corner recirculation length, a marked increase in turbulent mixing activity, and in one case creation of a central recirculation zone. This article highlights the importance of the combustor inlet swirl profile and shows that swirl type as well as swirl strength can affect the flow field significantly. The present database is well suited for numerical codes development and validation.  相似文献   

19.
利用三维数值模拟技术对微型燃气轮机中的离心压气机部分进行了数值分析,得到了离心压气机设计转速下的级特性曲线和各通流部件中的流动情况。数值分析表明:设计转速下压气机的级特性非常陡峭;整个特性线范围内离心叶轮基本在亚音速情况下工作,而径向扩压器是在跨音速条件下工作,离心压气机整机的最大流量是由径向扩压器的喉部面积决定的;离心压气机级内部各通流部件之间流动的相互干扰是引起流动分离的重要原因,各通流部件之间流动的相互匹配和协调将决定了离心压气机整机的性能和稳定性。  相似文献   

20.
Using the Navier-Stokes equations in conjunction with the k-? model of turbulence, the characteristics of flow in the region downstream of a conical diffuser with 5° angle of inclination are calculated. Two representative stations 1D2 and 10D2 after the diffuser exit are selected for comparison against experimental results. The calculations indicate an underestimation of mean velocity and turbulence kinetic energy at the first station, while satisfactory agreement is obtained for the mean velocity at the second station. The use of a modified k-? model sensitive to adverse pressure conditions improves the predictions considerably. The effect of inlet properties and Reynolds number on the flow characteristics at the above stations is studied using various inlet profiles and a range of Reynolds numbers based on the inlet diameter from 50 000 to 280 000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号