首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 439 毫秒
1.
In this paper we use a KAM theorem of Grébert and Thomann (Commun Math Phys 307:383–427, 2011) to prove the reducibility of the 1d wave equation with Dirichlet boundery conditions on \([0,\pi ]\) with a quasi-periodic in time potential under some symmetry assumptions. From Mathieu–Hill operator’s known results (Eastham in The spectral theory of periodic differential operators, Hafner, New York, 1974; Magnus and Winkler in Hill’s equation, Wiley-Interscience, London, 1969) and Bourgain’s techniques (Commun Math Phys 204:207–247, 1999), we prove that for any \(\epsilon \) small enough, there exist a \(0<m_{\epsilon }\le 1\) and one solution \(u_{\epsilon }(t,x)\) with
$$\begin{aligned} \Vert u_{\epsilon }(t_n,x)\Vert _{H^1({\mathbb {T}})}\rightarrow \infty , \qquad |t_n|\rightarrow \infty , \end{aligned}$$
where \(u_{\epsilon }(t,x)\) satisfies 1d wave equation
$$\begin{aligned} u_{tt}-u_{xx}+m_{\epsilon }u-\epsilon \cos 2t u=0, \end{aligned}$$
with Dirichlet boundery conditions on \([0,\pi ]\).
  相似文献   

2.
We study the Liouville-type theorem for the semilinear parabolic equation \(u_t-\Delta u =|x|^a u^p\) with \(p>1\) and \(a\in {\mathbb R}\). Relying on the recent result of Quittner (Math Ann, doi: 10.1007/s00208-015-1219-7, 2015), we establish the optimal Liouville-type theorem in dimension \(N=2\), in the class of nonnegative bounded solutions. We also provide a partial result in dimension \(N\ge 3\). As applications of Liouville-type theorems, we derive the blow-up rate estimates for the corresponding Cauchy problem.  相似文献   

3.
In this work we extend to infinite dimensions a previous result of Lyascenko given in finite dimensions for a class of Lipschitz functions. In particular, this extension substitutes the class of Lipschitz functions by a class of Hölder functions. Then we consider applications of these results to analyze its relation with the Markus–Yamabe Conjecture in infinite dimensions. We discuss in detail a celebrated example of Cima et al. ( Adv Math 131(2): 453–457, 1997) of a nonlinear system in dimension three whose Jacobian has a unique eigenvalue \(-1\) of multiplicity 3, and yet an explicit unbounded solution as \(t \rightarrow \infty \) exists. We also present explicit solutions of the same equation that tends to 0 as \(t \rightarrow \infty \). Then we look at this conjecture by considering not the properties of the whole system, but instead the properties of some solutions. Finally we present an application in an infinite dimensional Hilbert space, where we use different techniques to study the local and global asymptotic stabilities.  相似文献   

4.
This article is devoted to the investigation of the weighted topological entropy of generic points of the ergodic measures in dynamical systems. We showed that the weighted topological entropy of generic points of the ergodic measure \(\mu \) is equal to the weighted measure entropy of \(\mu ,\) which generalized the classical result of Bowen (Trans Am Math Soc 184:125–136, 1973). As an application, we also use the result to study the dimension of generic points for a class of skew product expanding maps on high dimensional tori.  相似文献   

5.
In continuation of Matsumoto’s paper (Nonlinearity 25:1495–1511, 2012) we show that various subspaces are \(C^{\infty }\)-dense in the space of orientation-preserving \(C^{\infty }\)-diffeomorphisms of the circle with rotation number \(\alpha \), where \(\alpha \in {\mathbb {S}}^1\) is any prescribed Liouville number. In particular, for every odometer \({\mathcal {O}}\) of product type we prove the denseness of the subspace of diffeomorphisms which are orbit-equivalent to \({\mathcal {O}}\).  相似文献   

6.
We consider the propagation of elastic waves in gas-filled porous media at small but non-zero values of Knudsen numbers \( {\text{Kn}} \), where \( {\text{Kn}} = \lambda /l \), \( \lambda \) is the mean free path of gas molecules; \( l \) is the characteristic size of inclusion (the so-called slip regime). In this case, it is possible to apply the classic equations of hydrodynamics with modified boundary conditions at solid walls. We have assumed that the gas molecules distribution function is satisfied at the modified Maxwell boundary conditions (Struchtrup 2013; Mohammadzadeh and Struchtrup 2015). We have obtained the expressions for drag and added mass coefficients for the Biot equations of poroelasticity for a system of randomly oriented gas-filled cylindrical capillaries. Our calculations have shown that the drag and added mass coefficients depend considerably on the Knudsen number and the properties of the surface. The influence of the interfacial slip effect on the velocities of the compressional wave of the first kind and shear wave is small, but the velocity and attenuation of the compressional wave of the second kind are considerably influenced by this effect. The results obtained show the fundamental possibility of the determination of the accommodation coefficient by measuring the velocity of the compressional wave of the second kind for different values of the Knudsen number.  相似文献   

7.
We consider the relativistic Vlasov–Maxwell system with data of unrestricted size and without compact support in momentum space. In the two-dimensional and the two-and-a-half-dimensional cases, Glassey–Schaeffer proved (Commun Math Phys 185:257–284, 1997; Arch Ration Mech Anal 141:331–354, 1998; Arch Ration Mech Anal. 141:355–374, 1998) that for regular initial data with compact momentum support this system has unique global in time classical solutions. In this work we do not assume compact momentum support for the initial data and instead require only that the data have polynomial decay in momentum space. In the two-dimensional and the two-and-a-half-dimensional cases, we prove the global existence, uniqueness and regularity for solutions arising from this class of initial data. To this end we use Strichartz estimates and prove that suitable moments of the solution remain bounded. Moreover, we obtain a slight improvement of the temporal growth of the \({L^\infty_x}\) norms of the electromagnetic fields compared to Glassey and Schaeffer (Commun Math Phys 185:257–284, 1997; Arch Ration Mech Anal 141:355–374, 1998). In the three-dimensional case, we apply Strichartz estimates and moment bounds to show that a regular solution can be extended as long as \({{\|p_0^{\theta} f \|_{L^{q}_{x}L^1_{p}}}}\) remains bounded for \({\theta > \frac{2}{q}}\), \({2 < q \leqq \infty}\). This improves previous results of Pallard (Indiana Univ Math J 54(5):1395–1409, 2005; Commun Math Sci 13(2):347–354, 2015).  相似文献   

8.
In this paper we prove asymptotically sharp weighted “first-and-a-half” \(2D\) Korn and Korn-like inequalities with a singular weight occurring from Cartesian to cylindrical change of variables. We prove some Hardy and the so-called “harmonic function gradient separation” inequalities with the same singular weight. Then we apply the obtained \(2D\) inequalities to prove similar inequalities for washers with thickness \(h\) subject to vanishing Dirichlet boundary conditions on the inner and outer thin faces of the washer. A washer can be regarded in two ways: As the limit case of a conical shell when the slope goes to zero, or as a very short hollow cylinder. While the optimal Korn constant in the first Korn inequality for a conical shell with thickness \(h\) and with a positive slope scales like \(h^{1.5}\), e.g., (Grabovsky and Harutyunyan in arXiv:1602.03601, 2016), the optimal Korn constant in the first Korn inequality for a washer scales like \(h^{2}\) and depends only on the outer radius of the washer as we show in the present work. The Korn constant in the first and a half inequality scales like \(h\) and depends only on \(h\). The optimal Korn constant is realized by a Kirchhoff Ansatz. This results can be applied to calculate the critical buckling load of a washer under in plane loads, e.g., (Antman and Stepanov in J. Elast. 124(2):243–278, 2016).  相似文献   

9.
This work is concerned with the partial regularity of the suitable weak solutions to the Boussinesq equations in \(\mathbb {R}^{n}\) where \(n=3,\,4\). By means of the De Giorgi iteration method developed in Vasseur (Nonlinear Differ Equ Appl 14(5–6):753–785, 2007), Wang, Wu (J Differ Equ 256(3):1224–1249, 2014), we obtain that \(n-2\) dimensional parabolic Hausdorff measure of the possible singular points set of the suitable weak solutions to this system is zero. Particularly, we obtain some interior regularity criteria only in terms of the scaled mixed norm of velocity for the suitable weak solutions to the Boussinesq equations, which implies that the potential singular points may only stem from the velocity field.  相似文献   

10.
We investigate the dynamics of a nonlinear model for tumor growth within a cellular medium. In this setting the “tumor” is viewed as a multiphase flow consisting of cancerous cells in either proliferating phase or quiescent phase and a collection of cells accounting for the “waste” and/or dead cells in the presence of a nutrient. Here, the tumor is thought of as a growing continuum \(\Omega \) with boundary \(\partial \Omega \) both of which evolve in time. In particular, the evolution of the boundary \(\partial \Omega \) is prescibed by a given velocity \({{{\varvec{V}}}.}\) The key characteristic of the present model is that the total density of cancerous cells is allowed to vary, which is often the case within cellular media. We refer the reader to the articles (Enault in Mathematical study of models of tumor growth, 2010; Li and Lowengrub in J Theor Biol, 343:79–91, 2014) where compressible type tumor growth models are investigated. Global-in-time weak solutions are obtained using an approach based on penalization of the boundary behavior, diffusion, viscosity and pressure in the weak formulation, as well as convergence and compactness arguments in the spirit of Lions (Mathematical topics in fluid dynamics. Compressible models, 1998) [see also Donatelli and Trivisa (J Math Fluid Mech 16: 787–803, 2004), Feireisl (Dynamics of viscous compressible fluids, 2014)].  相似文献   

11.
Under conditions similar to those in Shashkov and Shil’nikov (Differ Uravn 30(4):586–595, 732, 1994) we show that a \(C^{k+1}\) Lorenz-type map T has a \(C^{k}\) codimension one foliation which is invariant under the action of T. This allows us to associate T to a \(C^{k}\) one-dimensional transformation.  相似文献   

12.
We consider the flow past a sphere held at a fixed position in a uniform incoming flow but free to rotate around a transverse axis. A steady pitchfork bifurcation is reported to take place at a threshold \(Re^\mathrm{OS}=206\) leading to a state with zero torque but nonzero lift. Numerical simulations allow to characterize this state up to \(Re\approx 270\) and confirm that it substantially differs from the steady-state solution which exists in the wake of a fixed, non-rotating sphere beyond the threshold \(Re^\mathrm{SS}=212\). A weakly nonlinear analysis is carried out and is shown to successfully reproduce the results and to give substantial improvement over a previous analysis (Fabre et al. in J Fluid Mech 707:24–36, 2012). The connection between the present problem and that of a sphere in free fall following an oblique, steady (OS) path is also discussed.  相似文献   

13.
We consider a reaction–diffusion equation in one space dimension whose initial condition is approximately a sequence of widely separated traveling waves with increasing velocity, each of which is individually asymptotically stable. We show that the sequence of traveling waves is itself asymptotically stable: as \(t\rightarrow \infty \), the solution approaches the concatenated wave pattern, with different shifts of each wave allowed. Essentially the same result was previously proved by Wright (J Dyn Differ Equ 21:315–328, 2009) and Selle (Decomposition and stability of multifronts and multipulses, 2009), who regarded the concatenated wave pattern as a sum of traveling waves. In contrast to their work, we regard the pattern as a sequence of traveling waves restricted to subintervals of \(\mathbb {R}\) and separated at any finite time by small jump discontinuities. Our proof uses spatial dynamics and Laplace transform.  相似文献   

14.
In this paper we focused our study on derived from Anosov diffeomorphisms (DA diffeomorphisms ) of the torus \(\mathbb {T}^3,\) it is, an absolute partially hyperbolic diffeomorphism on \(\mathbb {T}^3\) homotopic to a linear Anosov automorphism of the \(\mathbb {T}^3.\) We can prove that if \(f: \mathbb {T}^3 \rightarrow \mathbb {T}^3 \) is a volume preserving DA diffeomorphism homotopic to a linear Anosov A,  such that the center Lyapunov exponent satisfies \(\lambda ^c_f(x) > \lambda ^c_A > 0,\) with x belongs to a positive volume set, then the center foliation of f is non absolutely continuous. We construct a new open class U of non Anosov and volume preserving DA diffeomorphisms, satisfying the property \(\lambda ^c_f(x) > \lambda ^c_A > 0\) for \(m-\)almost everywhere \(x \in \mathbb {T}^3.\) Particularly for every \(f \in U,\) the center foliation of f is non absolutely continuous.  相似文献   

15.
We consider positive classical solutions of
$$\begin{aligned} v_t=(v^{m-1}v_x)_x, \qquad x\in {\mathbb {R}}, \ t>0, \qquad (\star ) \end{aligned}$$
in the super-fast diffusion range \(m<-1\). Our main interest is in smooth positive initial data \(v_0=v(\cdot ,0)\) which decay as \(x\rightarrow +\infty \), but which are possibly unbounded as \(x\rightarrow -\infty \), having in mind monotonically decreasing data as prototypes. It is firstly proved that if \(v_0\) decays sufficiently fast only in one direction by satisfying
$$\begin{aligned} v_0(x) \le cx^{-\beta } \qquad \text{ for } \text{ all } ~x>0 \quad \hbox { with some }\quad \beta >\frac{2}{1-m} \end{aligned}$$
and some \(c>0\), then the so-called proper solution of (\(\star \)) vanishes identically in \({\mathbb {R}}\times (0,\infty )\), and accordingly no positive classical solution exists in any time interval in this case. Complemented by some sufficient criteria for solutions to remain positive either locally or globally in time, this condition for instantaneous extinction is shown to be optimal at least with respect to algebraic decay of the initial data. This partially extends some known nonexistence results for (\(\star \)) (Daskalopoulos and Del Pino in Arch Rat Mech Anal 137(4):363–380, 1997) in that it does not require any knowledge on the behavior of \(v_0(x)\) for \(x<0\). Next focusing on the phenomenon of extinction in finite time, we show that in this respect a mass influx from \(x=-\infty \) can interact with mass loss at \(x=+\infty \) in a nontrivial manner. Namely, we shall detect examples of monotone initial data, with critical decay as \(x\rightarrow +\infty \) and exponential growth as \(x\rightarrow -\infty \), that lead to solutions of (\(\star \)) which become extinct at a finite positive time, but which have empty extinction sets. This is in sharp contrast to known extinction mechanisms which are such that the corresponding extinction sets coincide with all of \({\mathbb {R}}\).
  相似文献   

16.
We investigate the size of the regular set for suitable weak solutions of the Navier–Stokes equation, in the sense of Caffarelli–Kohn–Nirenberg (Commun Pure Appl Math 35:771–831, 1982). We consider initial data in weighted Lebesgue spaces with mixed radial-angular integrability, and we prove that the regular set increases if the data have higher angular integrability, invading the whole half space \({\{t > 0\}}\) in an appropriate limit. In particular, we obtain that if the \({L^{2}}\) norm with weight \({|x|^{-\frac12}}\) of the data tends to 0, the regular set invades \({\{t > 0\}}\); this result improves Theorem D of Caffarelli et al. (Commun Pure Appl Math 35:771–831, 1982).  相似文献   

17.
We investigate the influence of a shifting environment on the spreading of an invasive species through a model given by the diffusive logistic equation with a free boundary. When the environment is homogeneous and favourable, this model was first studied in Du and Lin (SIAM J Math Anal 42:377–405, 2010), where a spreading–vanishing dichotomy was established for the long-time dynamics of the species, and when spreading happens, it was shown that the species invades the new territory at some uniquely determined asymptotic speed \(c_0>0\). Here we consider the situation that part of such an environment becomes unfavourable, and the unfavourable range of the environment moves into the favourable part with speed \(c>0\). We prove that when \(c\ge c_0\), the species always dies out in the long-run, but when \(0<c<c_0\), the long-time behavior of the species is determined by a trichotomy described by (a) vanishing, (b) borderline spreading, or (c) spreading. If the initial population is written in the form \(u_0(x)=\sigma \phi (x)\) with \(\phi \) fixed and \(\sigma >0\) a parameter, then there exists \(\sigma _0>0\) such that vanishing happens when \(\sigma \in (0,\sigma _0)\), borderline spreading happens when \(\sigma =\sigma _0\), and spreading happens when \(\sigma >\sigma _0\).  相似文献   

18.
The complex stress intensity factor K governing the stress field of an interface crack tip may be split into two parts, i.e.,■ and s~(-iε), so that K = ■ s~(-iε), s is a characteristic length and ε is the oscillatory index. ■ has the same dimension as the classical stress intensity factor and characterizes the interface crack tip field. That means a criterion for interface cracks may be formulated directly with■, as Irwin(ASME J. Appl. Mech. 24:361–364, 1957) did in 1957 for the classical fracture mechanics. Then, for an interface crack,it is demonstrated that the quasi Mode I and Mode II tip fields can be defined and distinguished from the coupled mode tip fields. Built upon SIF-based fracture criteria for quasi Mode I and Mode II, the stress intensity factor(SIF)-based fracture criterion for mixed mode interface cracks is proposed and validated against existing experimental results.  相似文献   

19.
In this note, we show that the Cauchy stress tensor \(\sigma\) in nonlinear elasticity is injective along rank-one connected lines provided that the constitutive law is strictly rank-one convex. This means that \(\sigma(F+\xi\otimes\eta)=\sigma(F)\) implies \(\xi \otimes\eta=0\) under strict rank-one convexity. As a consequence of this seemingly unnoticed observation, it follows that rank-one convexity and a homogeneous Cauchy stress imply that the left Cauchy-Green strain is homogeneous, as is shown in Mihai and Neff (Int. J. Non-Linear Mech., 2016, to appear).  相似文献   

20.
Consider the planar Newtonian \((2N+1)\)-body problem, \(N\ge 1,\) with \(2N\) bodies of unit mass and one body of mass \(m\). Using the discrete symmetry due to the equal masses and reducing by the rotational symmetry, we show that solutions with the \(2N\) unit mass points at the vertices of two concentric regular \(N\)-gons and \(m\) at the centre at all times form invariant manifold. We study the regular \(2N\)-gon with central mass \(m\) relative equilibria within the dynamics on the invariant manifold described above. As \(m\) varies, we identify the bifurcations, relate our results to previous work and provide the spectral picture of the linearization at the relative equilibria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号