首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
各向异性介质中弹性波的数值模拟   总被引:5,自引:2,他引:3  
提出了一种非均匀各向异性介质中弹性波传播的数值模拟算法。该方法可以灵活地运用于具有任意地表形状、内部孔洞、固液边界和不规则内部交界面的介质情况,另外,该方法自然满足复杂几何边界的自由表面条件。这种基于三角形和四边形离散网格的算法使用的是围绕每个节点的积分平衡方程,而不是其它有限差分法中使用的各个节点满足的弹性动力学的微分方程。该文工作是非均匀各向同性介质中弹性波传播格子法研究的继续。除了研究各向异性介质中波的传播以外,还给出了一种能够省时的四边形网格的格子法。  相似文献   

2.
文中将基于离散应力、速度混合变量弹性波方程的各种数值解法统称为混合差分法,该文研究这类解法中人工边界的透射边界条件。基于波动沿边界法向传播的特征量分析,给出了横观各向同性介质中复杂形状边界的透射条件。该文是一种局部透射条件,所需计算量极小。文中将此方法与交错网格差分解法结合并应用于横观各向同性介质弹性波计算。数值算例及反射系数分析表明,该方法很好地消除了人工边界对来波的反射。  相似文献   

3.
非均匀介质弹性波动方程的不规则网格有限差分方法   总被引:2,自引:0,他引:2  
从弹性波动方程出发,提出了一种新的空间不规则网格有限差分方法,并用于求解非均匀各向异性介质中的弹性波正演问题。这种方法简单易行,对于复杂几何结构,例如低速层、套管井和非平面界面等,在较细的不规则网格上进行离散,计算时间和占用内存更少。与多重网格差分方法相比,该方法不需要粗、细网格之间的插值,所有网格差分计算在同一次空间迭代中完成。具有复杂几何交界面的模型计算,包括地下透镜体、套管井眼等,在确定弹性常数和密度后,用不规则网格的差分方法更易实现。该方法使用了Higdon吸收边界条件解决人工边界反射问题,引入了新的稳定性条件和网格频散条件,很好地消除了非物理散射波。理论模型的效值计算表明,该方法具有良好的稳定性和计算精度,在模拟非均匀介质弹性波传播时,比相同精度的规则网格有限差分方法计算速度更快。该方法易于推广到非结构网格和三维问题中。  相似文献   

4.
表面裂纹疲劳扩展的数值模拟   总被引:1,自引:1,他引:1  
建立了一种无形状约束的模拟表面裂纹在线弹性断裂力学条件下疲劳扩展的数值方法,并研究了表面疲劳裂纹形状演化和裂纹尖端应力强度因子(SIF)的分布特征。该方法以三维有限单元技术和Paris疲劳裂纹扩展规律为基础,并在裂纹扩展增量计算中考虑了裂纹闭合影响。本文第一部分主要介绍模拟三维疲劳裂纹扩展的数值方法的理论背景和相关的技术细节。着重分析和讨论基于三维有限单元法计算裂纹SIF所涉及的几个主要问题:裂纹尖端单元网格密度对估算精度的影响;自由表面的影响及其修正方法;裂纹尖端非正交单元网格的影响及修正方法。  相似文献   

5.
数值求解非均匀介质中的输运问题广泛应用于科学计算和工程领域.介质的强非均匀性给相关问题的准确求解带来极大的困难.近年来,本课题组将有限分析法拓展到该领域,建立了非均匀介质中输运问题的有限分析法.该算法基于网格奇点邻域内类拉普拉斯方程局部解析解构建,算法具有很高的精度,且不依赖于介质的非均匀性强度.不管相邻网格传导率差异如何,仅需对原始网格进行很少地细分就可以获得非常准确的计算结果,因此与其他传统数值算法相比,可以大幅提高计算精度和效率.该算法可广泛应用于求解非均匀多孔介质中的渗流、复合材料中的热传导及电场分布等问题.  相似文献   

6.
运用一种改进的非结构化四边形格子法,对含孔正交各向异性板条受面内冲击拉伸时弹性应力波的传播过程和孔边的动应力集中进行了研究.非结构化格子法采用与有限元类似的网格剖分方法,并基于围绕每个节点的积分平衡方程,并自然满足复杂边界的自由边界条件.计算中不需存储刚度矩阵,因而计算速度快、效率高、节省内存,在解决应力波传播问题中具有显著的优越性.通过对多种工况进行数值模拟,分析了材料的各向异性性质、纤维方向、孔径比、加载脉冲周期等参数对孔边动应力的影响,得到了一些规律性的结果.并与现有实验结果进行对比,验证了该方法的有效性.  相似文献   

7.
成层半空间出平面自由波场的一维化时域算法   总被引:7,自引:0,他引:7  
刘晶波  王艳 《力学学报》2006,38(2):219-225
提出了一种计算出平面SH波斜入射时弹性水平成层半空间中自由波场时域计算的一维化有 限元方法. 在进行有限元网格划分时,竖向单元取满足有限元模拟精度的任意尺寸,水平向 网格尺寸由时间离散步长和水平视波速确定,并自动进行虚拟网格划分. 基底设置人工边界, 并将波动输入转化为等效荷载施加在边界节点上. 然后将集中质量有限元法和中心差分法相 结合建立节点运动方程,并将水平方向相邻节点的运动用该节点相邻时刻的运动表示,从而 将求解节点运动的二维方程组转化为一维方程组. 求解此方程组,即得到自由场中竖向一列 节点的运动. 最后根据行波传播的特点,可方便地确定全部自由波场. 理论分析和数值算例 表明,该方法具有较高的精度和良好的稳定性.  相似文献   

8.
本文所提算法适用于二维和三维多介质流体力学两步欧拉数值方法中输运计算的混合网格(包括自由面网格)界面处理。在一个混合网格中,界面被近似地看作直线(二维)或平面(三维)。整个方法分为三步:(1)第一步,用混合网格周围的八个网格的介质面积份额(二维)或二十六个网格的介质体积份额(三维)确定界面的法线方向;第二步,用混合网格的本身的介质面积份额(二维)或体积份额(三维)确定界面的方程(位置);第三步,用此直线方程求出通过网格边界的流以及下一时刻网格的面积份额(二维)或体积份额(三维)。最后给出了用此方法所做的一些数值计算及与SLIC算法的比较。  相似文献   

9.
非结构混合网格高超声速绕流与磁场干扰数值模拟   总被引:2,自引:0,他引:2  
对均匀磁场干扰下的二维钝头体无粘高超声速流场进行了基于非结构混合网格的数值模拟.受磁流体力学方程组高度非线性的影响及考虑到数值模拟格式的精度,目前在此类流场的数值模拟中大多使用结构网格及有限差分方法,因而在三维复杂外形及复杂流场方面的研究受到限制.本文主要探索使用非结构网格(含混合网格)技术时的数值模拟方法.控制方程为耦合了Maxwell方程及无粘流体力学方程的磁流体力学方程组,数值离散格式采用Jameson有限体积格心格式,5步Runge-Kutta显式时间推进.计算模型为二维钝头体,初始磁场均匀分布.对不同磁感应强度影响下的高超声速流场进行了数值模拟,并与有限的资料进行了对比,得到了较符合的结果.  相似文献   

10.
提出了一种计算出平面SH波斜入射时弹性半空间自由波场时域计算的一维化有限元方法。首先利用Snell定律确定平面波沿水平方向的传播规律,在用有限元法对弹性半空间进行离散化时,竖向单元尺寸根据波动有限元模拟精度要求确定,而水平向有限元网格尺寸根据水平向波的传播规律和采用的离散时间步长确定,使得有限元离散模型中任意节点的运动可以用水平向相邻节点的运动表示,从而将二维有限元节点运动方程组化为一维的形式。求解此一维方程组,可得到弹性半空间中一列节点的运动,再根据行波的传播规律,可确定全空间自由波场。理论分析和数值算例表明,该方法具有较高的精度和良好的稳定性。  相似文献   

11.
NUMERICAL SIMULATION OF ELASTIC WAVE PROPAGATION IN ANISOTROPIC MEDIA   总被引:2,自引:0,他引:2  
A new numerical simulation algorithm is presented for the elastic wave propagation in heterogeneous anisotropic media. We make discretization of the computational domain by using triangular and quadrangular grids. The scheme is based on integral equilibrium at each node to simulate the elastic wave propagation in heterogeneous anisotropic media. The scheme is very flexible in dealing with arbitrary surface topography, inner openings, liquid-solid boundaries and irregular interfaces. Moreover, the free-surface condition of complex geometrical boundaries can be satisfied naturally. This work is an extension of the grid method for the elastic wave propagation in heterogeneous isotropic media, and a quadrangular grid with low computational cost is also introduced. Project supported by the National Natural Science Foundation of China(19672016).  相似文献   

12.
A new 3 D finite- difference ( FD ) method of spatially asymmetric staggered grids was presented to simulate elastic wave propagation in topographic structures. The method approximated the first-order elastic wave equations by irregular grids finite difference operator with second-order time precise and fourth-order spatial precise. Additional introduced finite difference formula solved the asymmetric problem arisen in non-uniform staggered grid scheme, The method had no interpolation between the fine and coarse grids. All grids were computed at the same spatial iteration. Complicated geometrical structures like rough submarine interface, fault and nonplanar interfaces were treated with fine irregular grids. Theoretical analysis and numerical simulations show that this method saves considerable memory and computing time, at the same time, has satisfactory stability and accuracy.  相似文献   

13.
Finite difference is a well-suited technique for modeling acoustic wave propagation in heterogeneous media as well as for imaging and inversion. Typically, the method aims at solving a set of partial differential equations for the unknown pressure field by using a regularly spaced grid. Although finite differences can be fast and cheap to implement, the accuracy of the solution is always restricted by the computational resources. This is a fundamental key point to treat when dealing with large-scale problems. In this work, we present and test a method that uses a non-uniform distribution of grid points to improve on accuracy or to reduce the required computational resources. The applied grid is generated through a coordinate transformation. Differential geometry and generalized coordinates are used to handle and analyze the effect of using a non-uniform grid. Results obtained with the presented method show that the applied transformation as well as the number of points-per-wavelength influences the stability and dispersion in the solution. We exploit this observation to locally improve the accuracy of our simulations. The work presented in this paper allows us to conclude that differential geometry for finite differences can be used to reduce dispersion and hence improve the accuracy when modeling acoustic wave propagation in heterogeneous media. In addition, it can be used to avoid oversampling through the optimization of the number of grid nodes required to have an accurate solution or just honor to the boundaries.  相似文献   

14.
This paper presents a finite-difference (FD) method with spatially non-rectangular irregular grids to simulate the elastic wave propagation. Staggered irregular grid finite difference operators with a second-order time and spatial accuracy are used to approximate the velocity-stress elastic wave equations. This method is very simple and the cost of computing time is not much. Complicated geometries like curved thin layers, cased borehole and nonplanar interfaces may be treated with nonrectangular irregular grids in a more flexible way. Unlike the multi-grid scheme, this method requires no interpolation between the fine and coarse grids and all grids are computed at the same spatial iteration. Compared with the rectangular irregular grid FD, the spurious diffractions from “staircase” interfaces can easily be eliminated without using finer grids. Dispersion and stability conditions of the proposed method can be established in a similar form as for the rectangular irregular grid scheme. The Higdon‘s absorbing boundary condition is adopted to eliminate boundary reflections. Numerical simulations show that this method has satisfactory stability and accuracy in simulating wave propagation near rough solid-fluid interfaces. The computation costs are less than those using a regular grid and rectangular grid FD method.  相似文献   

15.
A 1D finite element method in time domain is developed in this paper and applied to calculate in-plane wave motions of free field exited by SV or P wave oblique incidence in an elastic layered half-space. First, the layered half-space is discretized on the basis of the propagation characteristic of elastic wave according to the Snell law. Then, the finite element method with lumped mass and the central difference method are incorporated to establish 2D wave motion equations, which can be transformed into 1D equations by discretization principle and explicit finite element method. By solving the 1D equations, the displacements of nodes in any vertical line can be obtained, and the wave motions in layered half-space are finally determined based on the characteristic of traveling wave. Both the theoretical analysis and the numerical results demonstrate that the proposed method has high accuracy and good stability. The project supported by the National Natural Science Foundation of China (50478014), the National 973 Program (2007CB714200) and the Beijing Natural Science Foundation (8061003). The English text was polished by Yunming Chen.  相似文献   

16.
A local interaction simulation approach (LISA) for the wave propagation in inhomogeneous 2D media is presented. The method is designed to take full advantage of massively parallel computing, such as provided by the Connection Machine. Crosspoints at the intersection of orthogonal interfaces separating media of different physical properties are treated in the framework of a sharp interface model. A comparison with finite difference techniques shows that the proposed method avoids the ambiguities due to the smoothing of the physical quantities, which is necessary in order to transform differential equations into finite difference equations. The smoothing procedure may cause severe numerical errors, when the variations of the physical properties across the interfaces are large.

In order to demonstrate the efficiency and reliability of the approach several examples of simulation of pulse propagation in different media are reported.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号