首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
黄虎 《力学学报》2003,35(5):606-609
在海洋水域,界面波对大尺度变化流的作用是一种典型的分层流动现象.考虑一不可压缩、无黏的分层势流运动,建立了一个在非平整运动海底上的n层流体演化系统,并对其进行了Hamilton描述.每层流体具有各自的常密度、均匀流水平速度,其厚度由未扰动和扰动部分构成.相对于顶层流体的自由表面,刚性、运动的海底具有一般地形变化特征.在明确指出n层流体运动的控制方程和各层交界面上的运动学、动力学边界条件(包含各层交界面上张力效应)后,对该分层流动力系统进行了Hamilton构造,即给出其正则方程和其下述的正则变量:各交界面位移和各交界面上的动量势密度差。  相似文献   

2.
二层流体中波动问题的Hamilton正则方程   总被引:1,自引:0,他引:1  
马晨明  乐嘉春 《力学季刊》2001,22(3):374-377
研究了两种常密度不可压缩理想流体组成的垂直分层的二流体系统的无旋等熵流动,考虑了上层流体与空气及两层流体间的表面张力。流动区域在水平方向无限伸展,上层流体有限深度,下层流体无限深。利用自由面及分界面相对于静止时平衡位置的偏移以及两层流体的速度势构造了Hamilton函数。为导出Hamilton正则方程引用了Euler描述下的流体运动的变分原理。自由面的位移是Hamilton意义下的正则变量,其对偶变量是上层流体在自由面上取值的速度势与密度的乘积。另一个正则变量是分界面的位移,其对偶变量是下层流体的密度与下层流体速度势在分界面上所取值的乘积减去上层流体密度与上层流体速度势在分界面上所取值的相应乘积。导出的Hamilton结构对分析分层流动中表面波与内波的相互作用是重要的。  相似文献   

3.
本文提供了在任意回转面上,用叶栅出气边上边界层特征参势表示的可压缩流动轴流式叶栅形面动能损失系数,形面摩擦系数,包含叶栅下游掺混损失在内的总的动能损失系数以及尾迹掺混损失系数的理论计算方法。本文的第一部分推导了上述各种损失系数的数学表达式。第二部分推导了任意回转面上回转叶栅包含离心力影响在内的可压缩索流边界层的冲量积分方程以及通过Mangler变换所得到的轴对称旋成体表面紊流边界层的冲量积分方程,并发现了两者之间流动的相似性。通过这两类边界层流动相似的比拟方法,找到了它们之间解的变换关系。第三部分详细地叙述了一个平面可压缩紊流边界层解的方法和具体的计算步骤。最后通过manglers以及上述的变换关系可以得到任意回转面上,可压缩回转叶栅紊流边界层特征参数以及上述各种损失系数的计算方法。   相似文献   

4.
本文利用Fourier变换和加权残数法建立了正交各向异性体反平面瞬态波散射问题的边界积分方程,构造了在边界上能满足波动方程的边界元函数,它比常用的二次元和高次元具有较好的适应性。数值结果表明利用该形函数计算高频情形下的散射问题具有很高的精度。  相似文献   

5.
折线型裂纹对SH波的动力响应   总被引:1,自引:0,他引:1  
利用Fourier积分变换方法,得出了无限平面中用裂纹位错密度函数表示的单裂纹散射场.根据无穷积分的性质,把单裂纹的散射场分解为奇异部分和有界部分.利用单裂纹的散射场建立了折线裂纹在SH波作用下的Cauchy型奇异积分方程.根据折线裂纹散射场和所得的积分方程讨论了裂纹在折点处的奇性应力及折点处的奇性应力指数.利用所得的奇性应力定义了折点处的应力强度因子.对所得Cauchy型奇积分方程的数值求解,可得裂纹端点和折点处的动应力强度因子。  相似文献   

6.
基于Papkovich-Neuber势函数研究了受刚性基底固结作用下的弹性薄层的滑动接触问题。通过Fourier变换得出弹性薄层应力、位移表达式的Fourier形式。在边界条件的限定下,利用积分变换手段将平面应变问题的弹性方程转化为第一类奇异积分方程。运用Gauss-Chebyshev积分法将奇异积分方程进行离散,采取Chebyshev多项式零点作为Gauss节点,对边界压应力进行数值求解,最终求得接触压应力函数的量纲为一的量的表达式。数值算例结果表明:摩擦系数为影响最大压应力偏心率的主要因素;层厚对压应力分布的影响显著。  相似文献   

7.
位移阶跃SH波对半圆形凹陷地形的散射   总被引:1,自引:0,他引:1  
本文利用积分变换和波函数展开方法求解位移阶跃的平面SH波对半圆形凹陷地形的散射问题,导出了散射位移场的解析表达式,,并给出了在凹陷地形表面上各点位移时程反应的数值结果。本文的结果可做为Duhamel积分的影响系数求解一个随时间任意变化的平面SH波被半圆形凹陷地形散射的问题。  相似文献   

8.
SH波在正交各向异性功能梯度无限长条中心裂缝处的散射   总被引:3,自引:0,他引:3  
研究了正交各向异性功能梯度材料无限长条中心裂缝对SH波的散射问题,为方便起见,材料两个方向的剪切模量和密度假定为指数模型.通过Fourier积分变换,将问题转化为对偶积分方程的求解.然后,用Cop-son方法求解对偶积分方程,定义了标准动应力强度因子,通过数值算例,讨论了在SH波作用下,裂缝尖端的标准动应力强度因子与入射波的频率、材料参数之间的关系.  相似文献   

9.
杨娟  李星 《力学季刊》2007,28(3):471-478
研究功能梯度压电带中裂纹对SH波的散射问题,为了便于分析,材料性质假定为指数模型,并假设裂纹面上的边界条件为电渗透型的.根据压电理论得到压电体的状态方程,利用Fourier积分变换,问题转化为对偶积分方程的求解.用Copson方法求解积分方程.求得了裂纹尖端动应力强度因子、电位移强度因子的解析表达式,最后数值结果显示了标准动应力强度因子与入射波数、材料参数、带宽、波数以及入射角之间的关系.  相似文献   

10.
具有精确色散性的非线性波浪数学模型   总被引:1,自引:0,他引:1  
金红  邹志利 《力学学报》2010,42(1):23-34
以完全非线性的自由表面边界条件为基础,以波面升高\eta和自由表面速度势\phi _\eta为待求变量,建立了新的波浪方程.方程在色散性上是完全精确的,非线性近似至三阶.与缓坡方程相比较,两者都具有精确的色散性,但该方程属于非线性模型,可模拟波浪的非线性效应,且适用于不规则波.方程的特点是属于微分-积分方程,对如何处理方程中积分项进行了讨论,并数值模拟了不同周期的线性波和二阶Stokes波,也模拟了波群的非线性演化,以对模型进行验证.   相似文献   

11.
An explicit formulation to study nonlinear waves interacting with a submerged body in an ideal fluid of infinite depth is presented. The formulation allows one to decompose the nonlinear wave–body interaction problem into body and free‐surface problems. After the decomposition, the body problem satisfies a modified body boundary condition in an unbounded fluid domain, while the free‐surface problem satisfies modified nonlinear free‐surface boundary conditions. It is then shown that the nonlinear free‐surface problem can be further reduced to a closed system of two nonlinear evolution equations expanded in infinite series for the free‐surface elevation and the velocity potential at the free surface. For numerical experiments, the body problem is solved using a distribution of singularities along the body surface and the system of evolution equations, truncated at third order in wave steepness, is then solved using a pseudo‐spectral method based on the fast Fourier transform. A circular cylinder translating steadily near the free surface is considered and it is found that our numerical solutions show excellent agreement with the fully nonlinear solution using a boundary integral method. We further validate our solutions for a submerged circular cylinder oscillating vertically or fixed under incoming nonlinear waves with other analytical and numerical results. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
The purpose of the present study is to establish a numerical model appropriate for solving inviscid/viscous free‐surface flows related to nonlinear water wave propagation. The viscous model presented herein is based on the Navier–Stokes equations, and the free‐surface is calculated through an arbitrary Lagrangian–Eulerian streamfunction‐vorticity formulation. The streamfunction field is governed by the Poisson equation, and the vorticity is obtained on the basis of the vorticity transport equation. For computing the inviscid flow the Laplace streamfunction equation is used. These equations together with the respective (appropriate) fully nonlinear free‐surface boundary conditions are solved using a finite difference method. To demonstrate the model feasibility, in the present study we first simulate collision processes of two solitary waves of different amplitudes, and compute the phenomenon of overtaking of such solitary waves. The developed model is subsequently applied to calculate (both inviscid and the viscous) flow field, as induced by passing of a solitary wave over submerged rectangular structures and rigid ripple beds. Our study provides a reasonably good understanding of the behavior of (inviscid/viscous) free‐surface flows, within the framework of streamfunction‐vorticity formulation. The successful simulation of the above‐mentioned test cases seems to suggest that the arbitrary Lagrangian–Eulerian/streamfunction‐vorticity formulation is a potentially powerful approach, capable of effectively solving the fully nonlinear inviscid/viscous free‐surface flow interactions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
A coupling method for numerical calculations of steady free‐surface flows around a body is presented. The fluid domain in the neighbourhood of the hull is divided into two overlapping zones. Viscous effects are taken in account near the hull using Reynolds‐averaged Navier–Stokes equations (RANSE), whereas potential flow provides the flow away from the hull. In the internal domain, RANSE are solved by a fully coupled velocity, pressure and free‐surface elevation method. In the external domain, potential‐flow theory with linearized free‐surface condition is used to provide boundary conditions to the RANSE solver. The Fourier–Kochin method based on the Fourier–Kochin formulation, which defines the velocity field in a potential‐flow region in terms of the velocity distribution at a boundary surface, is used for that purpose. Moreover, the free‐surface Green function satisfying this linearized free‐surface condition is used. Calculations have been successfully performed for steady ship‐waves past a serie 60 and then have demonstrated abilities of the present coupling algorithm. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
Mild-slope (MS) type equations are depth-integrated models, which predict under appropriate conditions refraction and diffraction of linear time-harmonic water waves. By using a streamfunction formulation instead of a velocity potential one, the complementary mild-slope equation (CMSE) was shown to give better agreement with exact linear theory compared to other MS-type equations. The main goal of this work is to extend the CMSE model for solving two-layer flow with a free-surface. In order to allow for an exact reference, an analytical solution for a two-layer fluid over a sloping plane beach is derived. This analytical solution is used for validating the results of the approximated MS-type models. It is found that the two-layer CMSE model performs better than the potential based one. In addition, the new model is used for investigating the scattering of linear surface water waves and interfacial ones over variable bathymetry.  相似文献   

15.
骑行波的非线性演化方程   总被引:1,自引:0,他引:1  
从能量的角度出发,采用Hamilton描述交结合变分原理和摄动分析,并借助于符号运算导出了骑行在大波上的小波的Hamiton密度函数和非线性动力学方程。这里的大流和小波是对波高而言的。在Hamilton描述中,正则变量取为波高和速度势。本文导出了描述小波演化的二阶方程,在一阶近下的方程与Henyey等人(1988)的结果一致。  相似文献   

16.
Two-dimensional solitary waves generated by disturbances moving near the critical speed in shallow water are computed by a time-stepping procedure combined with a desingularized boundary integral method for irrotational flow. The fully non-linear kinematic and dynamic free-surface boundary conditions and the exact rigid body surface condition are employed. Three types of moving disturbances are considered: a pressure on the free surface, a change in bottom topography and a submerged cylinder. The results for the free surface pressure are compared to the results computed using a lower-dimensional model, i.e. the forced Korteweg–de Vries (fKdV) equation. The fully non-linear model predicts the upstream runaway solitons for all three types of disturbances moving near the critical speed. The predictions agree with those by the fKdV equation for a weak pressure disturbance. For a strong disturbance, the fully non-linear model predicts larger solitons than the fKdV equation. The fully non-linear calculations show that a free surface pressure generates significantly larger waves than that for a bottom bump with an identical non-dimensional forcing function in the fKdV equation. These waves can be very steep and break either upstream or downstream of the disturbance.  相似文献   

17.
Diffraction theory of a reflection grating   总被引:3,自引:0,他引:3  
The reflection of a monochromatic plane electromagnetic wave by an electrically perfectly conducting grating is investigated. The vectorial electromagnetic problem is reduced to two separate scalar problems: those corresponding to E- and H-polarization respectively. A Green's function formulation of the problem is employed. For both cases an integral equation of the second kind for the remaining unknown function on the surface of the grating is derived. A numerical solution of this integral equation is obtained with the aid of either a (discrete) Fourier transform or a cubic spline approximation. Some numerical results of both the echellette grating and the sinusoidal grating are presented.  相似文献   

18.
A fully nonlinear irregular wave tank has been developed using a three‐dimensional higher‐order boundary element method (HOBEM) in the time domain. The Laplace equation is solved at each time step by an integral equation method. Based on image theory, a new Green function is applied in the whole fluid domain so that only the incident surface and free surface are discretized for the integral equation. The fully nonlinear free surface boundary conditions are integrated with time to update the wave profile and boundary values on it by a semi‐mixed Eulerian–Lagrangian time marching scheme. The incident waves are generated by feeding analytic forms on the input boundary and a ramp function is introduced at the start of simulation to avoid the initial transient disturbance. The outgoing waves are sufficiently dissipated by using a spatially varying artificial damping on the free surface before they reach the downstream boundary. Numerous numerical simulations of linear and nonlinear waves are performed and the simulated results are compared with the theoretical input waves. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
20.
V. Popuzin  M. Pennisi 《Meccanica》2014,49(9):2169-2179
The present paper discusses the crack problem in the linear porous elastic plane using the model developed by Nunziato and Cowin. With the help of Fourier transform the problem is reduced to an integral equation over the boundary of the crack. Some analytical transformations are applied to calculate the kernel of the integral equation in its explicit form. We perform a numerical collocation technique to solve the derived hyper-singular integral equation. Due to convolution type of the kernel, we apply, at each iteration step, the classical iterative conjugate gradient method in combination with the Fast Fourier technique to solve the problem in almost linear time. There are presented some numerical examples for materials of various values of porosity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号