首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Particle behavior in a turbulent flow in a circular pipe with a bed height h = 0.5R is studied at Reb = 40,000 and for two sizes of particles (5 μm and 50 μm) using large eddy simulation, one-way coupled with a Lagrangian particle tracking technique. Turbulent secondary flows are found within the pipe, with the curved upper wall affecting the secondary flow formation giving rise to a pair of large upper vortices above two smaller vortices close to the pipe floor. The behavior of the two sizes of particle is found to be quite different. The 50 μm particles deposit forming irregular elongated particle streaks close to the pipe floor, particularly at the center of the flow and the pipe corners due to the impact of the secondary flows. The deposition and resuspension rate of the 5 μm particles is high near the center of the floor and at the pipe corners, while values for the 50 μm particles are greatest near the corners. Near the curved upper wall of the pipe, the deposition rate of the 5 μm particles increases in moving from the wall center to the corners, and is greater than that for the larger particles due to the effects of the secondary flow. The maximum resuspension rate of the smaller particles occurs above the pipe corners, with the 50 μm particles showing their highest resuspension rate above and at the corners of the pipe.  相似文献   

2.
To permit simplified analysis of complex time-dependent flows, possible relationship between the near-wall flow, flow separation and vortices are studied numerically for a flow in a constricted two-dimensional channel. The pulsating incoming wave-form consists of a steady flow, followed by a half-sinus flow superimposed on the steady component. One pair of vortices is created in each cycle, one vortex near each wall. The vortices propagate downstream in the next cycles, promoting flow separation as they move. Existing flow separation criteria were not found to be uniformly valid. A relation between the near-wall flow and the vortical system exists only during the steady incoming flow phase of the cycle. It seems that local criteria of flow separation cannot be found for complex internal pulsating flow fields. However, the vorticity field can be utilized, even in complex time-periodic flows, for identifying vortices that have been formed by the roll-up of shear layers.  相似文献   

3.
We present in this paper test results of flexible micro-pillars and pillar arrays for wall shear stress measurements in flows with fluctuating wall shear stress such as unsteady separated flows or turbulent flows. Previous papers reported on the sensing principle and fabrication process. Static calibrations have shown this sensor to have a maximum nonlinearity of 1% over two orders of wall-shear-stress. For measurements in flows with fluctuating wall shear stress the dynamic response has been experimentally verified in an oscillating pipe flow and compared to a calculated response based on Stokes’ and Oseen’s solution for unsteady flow around a cylinder. The results demonstrate good agreement under the given boundary conditions of cylindrical micro-pillars and the limit of viscous Stokes-flow around the pillar. Depending on the fluid and pillar geometry, different response curves result ranging from a flat low-pass filtered response to a strong resonant behavior. Two different methods are developed to detect the frequency content and the directional wall shear stress information from image processing of large sensor films with arrays of micro-pillars of different geometry. Design rules are given to achieve the optimal conditions with respect to signal-to-noise ratio, sensitivity and bandwidth for measurements in turbulent flows.  相似文献   

4.
The near-wall region of an unsteady turbulent pipe flow has been investigated experimentally using hot-film anemometry and two-component particle image velocimetry. The imposed unsteadiness has been pulsating, i.e., when a non-zero mean turbulent flow is perturbed by sinusoidal oscillations, and near-uniformly accelerating in which the mean flow ramped monotonically between two turbulent states. Previous studies of accelerating flows have shown that the time evolution between the two turbulent states occurs in three stages. The first stage is associated with a minimal response of the Reynolds shear stress and the ensemble-averaged mean flow evolves essentially akin to a laminar flow undergoing the same change in flow rate. During the second stage, the turbulence responds rapidly to the new flow conditions set by the acceleration and the laminar-like behavior rapidly disappears. During the final stage, the flow adapts to the conditions set by the final Reynolds number. In here, it is shown that the time-development of the ensemble-averaged wall shear stress and turbulence during the accelerating phase of a pulsating flow bears marked similarity to the first two stages of time-development exhibited by a near-uniformly accelerating flow. The stage-like time-development is observed even for a very low forcing frequency; \(\omega ^{+}=\omega \nu /{\overline {u}}_{\tau }^{2}=0.00073\) (or equivalently, \({l}_{s}^{+}=\sqrt {2/\omega ^{+}}=52\)), at an amplitude of pulsation of 0.5. Some previous studies have considered the flow to be quasi-steady at \({l}_{s}^{+}=52\); however, the forcing amplitude has been smaller in those studies. The importance of the forcing amplitude is reinforced by the time-development of the ensemble-averaged turbulence field. For, the near-wall response of the Reynolds stresses showed a dependence on the amplitude of pulsation. Thus, it appears to exist a need to seek alternative similarity parameters, taking the amplitude of pulsation into account, if the response of different flow quantities in a pulsating flow are to be classified correctly.  相似文献   

5.
 Planar contraction flows of non-Newtonian fluids with integral constitutive models are studied to investigate the problem of numerical breakdown at high Weissenberg or Debrorah numbers. Spurious shear stress extrema are found on the wall downstream of the re-entrant corner for both sharp and rounded corners. Moreover, a non-monotonic relation between shear stress and strain rate is found when the Deborah number limit is approached, which correlates with these shear extrema. This strongly suggests that non-monotonicity between shear stress and strain rate may be responsible for the Deborah number limit problem in contraction flow simulations. This non-monotonicity is caused by the inaccuracy of the quadrature, using constitutive equations that do not have shear stress maxima when exactly evaluated. This conclusion agrees with recent analytical findings by others that inaccuracy of the integration along the streamlines – either by numerical integration or asymptotic approximation – makes the problem ill-conditioned, with spurious growth occurring on the wall downstream of the re-entrant corner. Received: 5 March 1999/Accepted: 1 September 1999  相似文献   

6.
An investigation of laminar steady and unsteady flows in a two‐dimensional T‐junction was carried out for Newtonian and a non‐Newtonian fluid analogue to blood. The flow conditions considered are of relevance to hemodynamical applications and the localization of coronary diseases, and the main objective was to quantify the accuracy of the predictions and to provide benchmark data that are missing for this prototypical geometry. Under steady flow, calculations were performed for a wide range of Reynolds numbers and extraction flow rate ratios, and accurate data for the recirculation sizes were obtained and are tabulated. The two recirculation zones increased with Reynolds number, but the behaviour was non‐monotonic with the flow rate ratio. For the pulsating flows a periodic instability was found, which manifests itself by the breakdown of the main vortex into two pieces and the subsequent advection of one of them, while the secondary vortex in the main duct was absent for a sixth of the oscillating period. Shear stress maxima were found on the walls opposite the recirculations, where the main fluid streams impinge onto the walls. For the blood analogue fluid, the recirculations were found to be 10% longer but also short lived than the corresponding Newtonian eddies, and the wall shear stresses are also significantly different especially in the branch duct. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
A specially-designed rotating rig for producing near Couette flow was used in the calibration of a marginally elevated hot-wire shear stress probe. The probe was then used for measurements in both the turbulent boundary layer and pipe flows. Results showed that the mean wall shear stress can be accurately predicted and the near wall statistical quantities of intensity, skewness and flatness of shear stress fluctuations concurred well with previous works, thereby supporting the notion of a time-resolved shear stress probe for turbulent flows.  相似文献   

8.
This study looks at the influence of slip at the wall on plane Couette flows of viscous and yield stress fluids with ultrasonic wall motion. These fluids are used in coating processes. A constant speed V at one wall creates the flow, and vibrations and slip take place at the other wall. Isothermal conditions and arbitrary (longitudinal or transverse) vibrations are considered, with negligible vibrational inertia.For the Bingham model, due to its nonlinearity, whatever the vibration direction and the wall slipperiness, significant decreases occur in the average stress as soon as moderate values of the dimensionless vibration velocity amplitude are involved. Such effects are associated with adherent or slippery walls, even with linear friction laws. They do not occur with linear viscous (Newtonian) models.Average stress reductions can reach nearly 100% for very high Oldroyd numbers, i.e. for stress values without vibration close to the yield limit. Slip velocity also decreases. The cost in terms of the power dissipated remains relatively less than in the Newtonian case, and may contribute to a change in the temperature field. Even when the flow without vibration is a pure slip one, large enough amplitude vibrations, either longitudinal or transverse, applied at the wall can reduce the average shear stress and slip velocity, giving rise to an average axial shear flow.Hence vibrations of moderate or high-velocity amplitude applied to adherent or slippery walls enhance plane Couette flow rates for viscoplastic materials. With moderate values of this amplitude, longitudinal vibrations may be 1.5–2 times more efficient than transverse vibrations with an equivalent cost. However, if for technological reasons transverse vibrations have to be preferred, they can also produce significant results. In any case, coating flows should benefit from an adequate application of ultrasound at the wall.  相似文献   

9.
A direct numerical simulation of low Reynolds number turbulent flows in an open‐channel with sidewalls is presented. Mean flow and turbulence structures are described and compared with both simulated and measured data available from the literature. The simulation results show that secondary flows are generated near the walls and free surface. In particular, at the upper corner of the channel, a small vortex called inner secondary flows is simulated. The results show that the inner secondary flows, counter‐rotating to outer secondary flows away from the sidewall, increase the shear velocity near the free surface. The secondary flows observed in turbulent open‐channel flows are related to the production of Reynolds shear stress. A quadrant analysis shows that sweeps and ejections are dominant in the regions where secondary flows rush in toward the wall and eject from the wall, respectively. A conditional quadrant analysis also reveals that the production of Reynolds shear stress and the secondary flow patterns are determined by the directional tendency of the dominant coherent structures. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Results are reported of an experimental investigation of gas–liquid counter-current flow in a vertical rectangular channel with 10 mm gap, at rather short distances from liquid entry. Flooding experiments are carried out using air and various liquids (i.e., water, 1.5% and 2.5% aqueous butanol solutions) at liquid Reynolds numbers ReL < 350. Visual observations and fast recordings suggest that the onset of flooding at low ReL (<250) is associated with liquid entrainment from isolated waves, whereas “local bridging” is dominant at the higher ReL examined in this study. Significant reduction of flooding velocities is observed with decreasing interfacial tension, as expected. Instantaneous film thickness measurements show that under conditions approaching flooding, a sharp increase of the mean film thickness, of mean wave amplitude and of the corresponding RMS values takes place. Film thickness power spectra provide evidence that by increasing gas flow the wave structure is significantly affected; e.g., the dominant wave frequency is drastically reduced. These data are complemented by similar statistical information from instantaneous wall shear stress measurements made with an electrochemical technique. Power spectra of film thickness and of shear stress display similarities indicative of the strong effect of waves on wall stress; additional evidence of the drastic changes in the liquid flow field near the wall due to the imposed gas flow, even at conditions below flooding, is provided by the RMS values of the wall stress. A simple model is presented for predicting the mean film thickness and mean wall shear stress under counter-current gas–liquid flow, below critical flooding velocities.  相似文献   

11.
High-speed video recordings (500 Hz) of flow visualizations in the near wall region of a turbulent open channel flow were synchronized with hot-film measurements of flow velocity and bed shear stress. Analysis of the video images provided information about the main characteristics of coherent flow structures associated with the occurrence of low-speed streak ejections near the bed. These structures consisted mainly of oscillating shear layers that were converted in the downstream direction and lifted away from the bed. A visual detection criterion was developed to obtain ensemble averaged profiles of the velocity and shear stress data during ejection events, allowing for the characterization of the associated flow field during the occurrence of coherent structures. Conditional averaging suggests that the occurrence of such coherent patterns affects mainly the turbulence structure in the wall region, and that the observed events reveal a plausible mechanism by which energy is extracted from the mean flow by large scale turbulent fluctuations, and then further transferred towards smaller eddies, while the structures lose their coherence. The intermittent nature of production and dissipation of turbulent energy becomes noticeable, taking place about 21% of the time. The results obtained also provide evidence that seems to link the structures responsible for the turbulent vertical transport of momentum, and for the maintenance of the turbulent state, with the mechanism that triggers the entrainment of sediment into suspension. Comparison of present results with other experiments conducted in different types of flows strongly confirms a universal structure of coherent events in wall bounded flows.The support of the Fluid, Hydraulic, and Paniculate System Program of the National Science Foundation (Grant CTS-9210211) and the donors of the Petroleum Research Fund of the American Chemical Society (Grant PRF 24328-G2) is gratefully acknowledged.  相似文献   

12.
Nomenclature  τ  wallshearstressγshearrateτy yieldstressηc Cassonviscosityktheconsistencyindexnnon_Newtonianindexτp shearstressofthepthelementωangularvelocityRvessel’sradiusCwavespeedM  magneticparameter (Hartmannnumber)u,w velocitycomponentinther_andz_directions,respectivelyP  pressureα  unsteadinessparameter k , R meanparametersTp relaxationtimeofthepthelementρ densityIntroductionTheimportancetoatherogenesisofarterialflowphenomenasuchasflowseparation ,recirculationands…  相似文献   

13.
The incompressible laminar flow of air and heat transfer in a channel with a backward-facing step is studied for steady cases and for pulsatile inlet conditions. For steady flows the influence of the inlet velocity profile, the height of the step and the Reynolds number on the reattachment length is investigated. A parabolic entrance profile was used for pulsatile flow. It was found with amplitude of oscillation of one by Re=100 that the primary vortex breakdown through one pulsatile cycle. The wall shear rate in the separation zone varied markedly with pulsatile flows and the wall heat transfer remained relatively constant. The time-average pulsatile heat transfer at the walls was greater as with steady flow with the same mean Reynolds number.  相似文献   

14.
Re-entrant corner flows of UCM fluids: The natural stress basis   总被引:1,自引:1,他引:0  
  相似文献   

15.
In a companion paper, a simple analytical formulation has been established which provides the wall shear stress in laminar bubbly flows for idealised transverse void fraction distributions. In the present paper, this approach is applied to Poiseuille bubbly flows in circular ducts. New measurements of the void fraction profiles and wall friction angular distribution in a pipe are presented for a wide range of flow parameters. Approximating the void profiles by step-functions allows us to evaluate the wall friction with the above mentioned model. Results are shown to agree satisfactorily with measurements. Notably, negative wall shear stress and wall shear stress much higher than their single-phase flow counterpart at the same liquid flow rate are recovered. Therefore, the principal mechanisms responsible for friction modification are captured with this simple model.  相似文献   

16.
Issues of blood flow modeling under unsteady-state conditions at moderate shear rates are considered using a blood rheological model accounting both for the viscoelastic properties and the thixotropy caused by erythrocyte aggregation. The resulting shear stress versus time relations for single shear rate steps and the dependence of the complex viscosity components on the shear rate amplitude in oscillating shear flow show good qualitative correspondence with the experimental data reported in the literature.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, pp. 26–30, November–December, 1995.  相似文献   

17.
Spanwise space–time correlations of the wall shear stress and the longitudinal velocity fluctuations in the low buffer layer of an unsteady channel flow are reported. The imposed amplitude is 20% of the centerline velocity and the imposed frequency covers a large range going from the quasi-steady limit to the bursting frequency of the corresponding steady flow. The unsteady spanwise correlation coefficient is investigated both through its own modulation characteristics (amplitude and phase shifts) and those of the resulting streak spacing. A good correspondence is found between the modulation of the streak spacing and that of the ejection period. The data is further analyzed by temporal filtering of the wall shear stress and streamwise velocity fluctuations. It is shown that the large outer-layer structures play a “passive” role in the unsteady response of the near wall turbulence. The inner wall eddies, in return, are amply responsible for the unsteady reaction of both the turbulent wall shear stress and the streamwise velocity intensities in the buffer layer.  相似文献   

18.
A new pulsed wire probe for making velocity and turbulence measurements in the near wall region of incompressible, isothermal boundary layers of all kinds is described. Results of careful calibrations of the probe response in both laminar and turbulent flows are presented, with particular emphasis on the effects of diffusion in the very near wall region. Analytic results for the motion and distortion of a heat puff in linear shear flow near a wall are developed and these are shown to validate a very simple approximate theory that accounts for the diffusional effects. It is demonstrated that correction procedures based on the theory can be successfully implemented. Examples of the use of the probe in highly turbulent, separated flows, as well as more standard boundary layers, are given and its response near the wall is contrasted with that of the corresponding (parallel wire) probe used for surface shear stress measurements.  相似文献   

19.
A new turbulent flow with distinct three‐dimensional characteristics has been designed in order to study the impact of mean‐flow skewing on the turbulent coherent vortices and Reynolds‐averaged statistics. The skewing of a unidirectional plane Couette flow was achieved by means of a spanwise pressure gradient. Direct numerical simulations of the statistically steady Couette–Poiseuille flow enabled in‐depth explorations of the turbulence field in the skewed flow. The imposition of a modest spanwise gradient turned the mean flow about 8° away from the original Couette flow direction and this turning angle remained nearly the same over the entire cross section. Nevertheless, a substantial non‐alignment between the turbulent shear stress angle and the mean velocity gradient angle was observed. The structure parameter turned out to slightly exceed that in the pure Couette flow, contrary to the observations made in some other three‐dimensional shear flows. Coherent flow structures, which are known to be associated with the Reynolds shear stress in near‐wall regions, were identified by the λ2‐criterion. Instantaneous and ensemble‐averaged vortices resembled those found in the unidirectional Couette flow. In the skewed flow, however, the vortex structures were turned to align with the local mean‐flow direction. The conventional symmetry between Case 1 and Case 2 vortices was broken due to the mean‐flow three‐dimensionality. The turning of the coherent vortices and the accompanying symmetry‐breaking gave rise to secondary and tertiary turbulent shear stress components. By averaging the already ensemble‐averaged shear stresses associated with Case 1 and Case 2 vortices in the homogeneous directions, a direct link between the educed near‐wall structures and the Reynolds‐averaged turbulent stresses was established. These observations provide evidence in support of the hypothesis that the structural model proposed for two‐dimensional turbulent boundary layers remains valid also in flows with moderate mean three‐dimensionality. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
改进虚拟边界算法在超声速流动问题求解中的应用   总被引:1,自引:0,他引:1  
张阳  邹建锋  郑耀 《力学学报》2018,50(3):538-552
提出了一种改进的虚拟单元浸没边界法, 并与一种高阶格式的有限差分算法相结合, 运用于求解超声速复杂几何绕流问题.该算法的核心思想在于在固体边界的内部和外部分别施加满足边界关系的作用点, 使得几何边界离散更加细化, 起到了壁面附近网格局部加密的作用.采用源空间内流体点作为反距离插值算法的重构点, 有效避免了插值点数目过少而与作用点相重合情况.通过对二维激波反射现象 (马赫数为 2.81) 和三维超声速球体绕流问题 (马赫数为 1.2) 的数值模拟, 与实验结果对比表明, 本文改进算法相对一般的虚拟边界法来说能显著提高数值精度, 减小计算误差.计算结果揭示了球体绕流中剪切层、压缩波系和尾迹的相互作用导致自由剪切层失稳的机理.剪切层厚度和湍流雷诺脉动经历了线性增长、大幅度震荡和小幅度波动三个阶段, 导致剪切层表面褶皱因子变化呈指数规律增长.其湍流结构表现出明显的各向异性, 具体在流向雷诺正应力在湍流脉动中占主导地位, 激波的压缩作用对不同方向雷诺正应力的影响存在空间迟滞效应.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号