首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
We examine emergent, self-organized particle cluster conformations in quasistatically deforming dense granular materials from the perspective of structural stability. A structural mechanics approach is employed, first, to devise a new stability measure for such conformations in equilibrium and, second, to use this measure to explore the evolving stability of jammed states of specific cluster conformations, i.e. particles forming force chains and minimal contact cycles. Knowledge gained on (a) the spatial and temporal evolution of stability of individual jammed conformations and (b) their relative stability levels, offer valuable clues on the rheology and, in particular, self-assembly of granular materials. This study is undertaken using data from assemblies of nonuniformly sized circular particles undergoing 2D deformation in two biaxial compression tests: a discrete element simulation of monotonic loading under constant confining pressure, and cyclic loading of a photoelastic disk assembly under constant volume. Our results suggest that the process of self-assembly in these systems is realized at multiple length scales, and that jammed force chains and minimal cycles form the basic building blocks of this process. In particular, 3-cycles are stabilizing agents that act as granular trusses to the load-bearing force chain columns. This co-evolutionary synergy between force chains and 3-cycles proved common to the different materials under different loading conditions. Indeed, the remarkable similarities in the evolution of stability, prevalence and persistence of minimal cycles and force chains in these systems suggest that these structures and their co-evolution together form a generic feature of dense granular systems under quasistatic loading.  相似文献   

2.
颗粒流动力学及其离散模型评述   总被引:14,自引:0,他引:14  
孙其诚  王光谦 《力学进展》2008,38(1):87-100
颗粒流是由众多颗粒组成的具有内在相互作用的非经典介质流动. 自然界常见颗粒流都是密集流, 颗粒间接触形成力链, 诸多力链相互交接构成支撑整个颗粒流重量和外载荷的网络, 其局部构型及强度在外载荷下演化, 是颗粒流摩擦特性和接触应力的来源.本文介绍球形颗粒间无粘连作用时的Hertz法向接触理论和Mindlin-Deresiewicz切向接触理论. Campbell依据是否生成较为稳定的力链把颗粒流分为弹性流和惯性流两大类, 其中弹性-准静态流和惯性-碰撞流分别对应准静态流和快速流, 作为两种极端流动情况通常处理成连续体, 分别采用摩擦塑性模型和动理论予以描述, 但是表征接触力链的颗粒弹性参数并不出现这两个模型和理论框架中, 如何进一步考虑颗粒弹性参数将非常困难. 目前离散动力学方法逐渐成为复现其复杂颗粒流动现象、提取实验不可能获得的内部流动信息进而综合起来探索颗粒流问题的一种有效工具, 其真实性强于连续介质理论的描述. 软球模型对颗粒间接触力简化处理, 忽略了切向接触力对法向接触力及其加载历史的依赖, 带来了法向和切向刚度系数如何标度等更艰难的物理问题, 但由于计算强度小而广泛应用于工程问题中. 硬球模型不考虑颗粒接触变形, 因而不能描述颗粒流内在接触应变等物理机理, 仅适用于快速颗粒流, 这不仅仅是由于两体碰撞的限制. 因此基于颗粒接触力学的离散颗粒动力学模型是崭新的模型,适用于准静态流到快速流整个颗粒流态的模拟, 可以细致考虑接触形变及接触力的细节,建立更为合理的颗粒流本构关系, 进而有力的促进颗粒流这一非经典介质流动的研究.   相似文献   

3.
结合颗粒物质力学理论,通过离散元法实现铁粉末压制过程模拟并通过压制方程进行验证,针对粉末体系中的力链演化问题,提出力链特征定量分析方式,进一步通过分析不同颗粒间摩擦系数、侧壁摩擦系数与颗粒运动状态转变的方式,探讨摩擦特性对力链量化特征的影响,从而建立摩擦行为与力链演化间的联系. 研究结果表明:随颗粒间摩擦系数增大,整体力链数目变少,力链方向系数、承载不均匀度及单位屈曲度均变大,而随侧壁摩擦系数增大,力链特征差异较小,则颗粒间摩擦系数较侧壁摩擦系数对力链特征演化具有更显著影响. 同时发现,颗粒接触状态的改变与力链特征演化间具有对应性. 研究成果将进一步拓展粉末压制中考虑摩擦行为及力链演化过程在内的粉体致密化行为理论.   相似文献   

4.
颗粒物质中的多尺度问题   总被引:1,自引:0,他引:1  
颗粒物质是大量离散的固体颗粒相互作用而组成的复杂体系. 依据颗粒排布的稀疏程度, 体系可分为颗粒气体、颗粒流体和颗粒固体,它们有不同本质的动量传递和能量耗散机制. 后两者属于密集颗粒物质体系,内部形成了颗粒$\to $力链$ \to$体系的多尺度结 构,并涉及多个特征时间尺度,是典型的多尺度体系. 合理分割体系结构层 次、正确理解不同层次的物理过程、并确定它们之间的关联是密集颗粒物质研究的核心任务. 本文依次分析了密集颗粒物质的内在物理图像、多尺度结构层次和特征时间等,并介绍了多 尺度研究框架.  相似文献   

5.
冲击载荷作用下颗粒材料动态力学响应的近场动力学模拟   总被引:3,自引:0,他引:3  
章青  顾鑫  郁杨天 《力学学报》2016,48(1):56-63
颗粒材料在冲击载荷作用下的动态力学行为是学术界关注的热点问题. 新近问世的近场动力学(peridynamics)理论将材料视为由大量有限体积和有限质量的物质点组成,基于非连续性和非局部作用假定建模,建立空间积分形式的运动方程,自然适应于颗粒材料动态力学行为的描述与分析. 发展了描述颗粒间接触作用的物质点尺度的排斥力模型,考虑近场动力学方法中非局部长程力特征,改进了近场动力学中的初始微观弹脆性(prototype microelastic brittle, PMB) 模型的本构力函数,并消除了原PMB 模型中存在的“边界效应” 问题. 计算分析了冲击载荷作用下碳化钨陶瓷颗粒体系的动态力学响应,得到了不同冲击速度下颗粒体系的冲击波速,PD计算结果与试验结果高度一致;通过颗粒物质点尺度作用描述单颗粒尺度的接触作用,很好地再现了颗粒的转动与平动、颗粒挤压变形以及颗粒破碎等现象;刚性冲击板附近同时存在严重的颗粒破碎与轻微的颗粒损伤,远离冲击板的部分颗粒出现破损,且颗粒破碎主要是由颗粒间挤压、碰撞以及相对滑动剪切作用造成的. 研究结果表明,所发展的计算模型和分析方法能很好地反映颗粒材料动态力学行为,具有广泛的应用价值.   相似文献   

6.
Elastic solitary waves resulting from Hertzian contact in one-dimensional (1-D) granular chains have demonstrated promising properties for wave tailoring such as amplitude-dependent wave speed and acoustic band gap zones. However, as load increases, plasticity or other material nonlinearities significantly affect the contact behavior between particles and hence alter the elastic solitary wave formation. This restricts the possible exploitation of solitary wave properties to relatively low load levels (up to a few hundred Newtons). In this work, a method, which we term preconditioning, based on contact pre-yielding is implemented to increase the contact force elastic limit of metallic beads in contact and consequently enhance the ability of 1-D granular chains to sustain high-amplitude elastic solitary waves. Theoretical analyses of single particle deformation and of wave propagation in a 1-D chain under different preconditioning levels are presented, while a complementary experimental setup was developed to demonstrate such behavior in practice. The experimental results show that 1-D granular chains with preconditioned beads can sustain high amplitude (up to several kN peak force) solitary waves. The solitary wave speed is affected by both the wave amplitude and the preconditioning level, while the wave spatial wavelength is still close to 5 times the preconditioned bead size. Comparison between the theoretical and experimental results shows that the current theory can capture the effect of preconditioning level on the solitary wave speed.  相似文献   

7.
In order to investigate the characteristics of force chains in a granular flow system, a parallel plate shear cell is constructed to simulate the shear movement of an infinite parallel plate and observe variations in relevant parameters. The shear dilatancy process is divided into three stages, namely, plastic strain, macroscopic failure, and granular recombination. The stickslip phenomenon is highly connected with the evolution of force chains during the shear dilatancy process. The load–distribution rate curves and patterns of the force chains are utilized to describe the load-carrying behaviors and morphologic changes of force chains separately. Force chains, namely, “diagonal gridding,” “tadpole-shaped,” and “pinnate” are defined according to the form of the force chains in the corresponding three stages.  相似文献   

8.
邹宇雄  马刚  李易奥  王頔  邱焕峰  周伟 《力学学报》2021,53(9):2374-2383
颗粒材料是一种复杂的多体相互作用体系, 由大量离散的颗粒和其周围的自由体积组成. 虽然颗粒的自由体积与颗粒材料的力学性能和变形特征的相关性已得到证实, 但是由于表征上的困难, 目前对非球形颗粒体系的局部自由体积的认识还不够充分. 本文采用连续离散耦合分析方法进行了不同主轴长度的椭球颗粒试样的三轴剪切数值模拟, 基于Set Voronoi算法对剪切过程中的颗粒试样进行了Voronoi元胞分割, 分析了颗粒试验在剪切过程中自由体积的统计分布特性和演化规律, 研究了颗粒形态对自由体积的影响. 剪切过程中Voronoi元胞的各向异性逐渐增强, 且各项异性增强程度随颗粒非球度的增加而增大, 表明非球颗粒在剪切过程中经历更加强烈的重排列. 具有不同非球度的椭球颗粒体系的局部孔隙比均服从k?Γ分布, 且这个分布仅与颗粒体系的全局孔隙比相关, 不受颗粒形态和剪切状态的影响. 局部孔隙比的波动呈现非对称拉普拉斯分布, 非对称参数刻画了局部自由体积收缩和膨胀的博弈, 其与全局孔隙比呈线性关系.   相似文献   

9.
Continuum mechanics relies on the fundamental notion of a mesoscopic volume “element” in which properties averaged over discrete particles obey deterministic relationships. Recent work on granular materials suggests that a continuum law may be inapplicable, revealing inhomogeneities at the particle level, such as force chains and slow cage breaking. Here, we analyze large-scale three-dimensional discrete-element method (DEM) simulations of different granular flows and show that an approximate “granular element” defined at the scale of observed dynamical correlations (roughly three to five particle diameters) has a reasonable continuum interpretation. By viewing all the simulations as an ensemble of granular elements which deform and move with the flow, we can track material evolution at a local level. Our results confirm some of the hypotheses of classical plasticity theory while contradicting others and suggest a subtle physical picture of granular failure, combining liquid-like dependence on deformation rate and solid-like dependence on strain. Our computational methods and results can be used to guide the development of more realistic continuum models, based on observed local relationships between average variables.  相似文献   

10.
点载荷作用下密集颗粒物质的传力特性分析   总被引:2,自引:0,他引:2  
利用颗粒离散元商业软件PFC3D, 模拟了在2m*1m*0.01m容器中直径分别为0.01m, 0.008m和0.006m的颗粒各1*10$^4$个, 受重力作用下的静态密集堆积; 以此为初始条件, 在表层随机选择7个颗粒分别施加5.2*10$^{ - 2}$N(100倍最大颗粒重量)的点载荷, 进行应力传播特点研究. 结果表明: 力的传递在局部范围内呈现很强的各向异性; 应力涨落随着距离的增加呈指数下降; 在大于5倍最大颗粒粒径时, 其分布可以使用弹性力学理论来计算. 探讨了摩擦系数$\mu =0$, 0.2, 1对应力传递的影响, 随着摩擦系数的增加, 各向异性范围减小.  相似文献   

11.
The force chain is the core of the multi-scale analysis of granular matter. Accurately extracting the force chain information among particles is of great significance to the study of particle mechanics and geological hazards caused by particle flow. However, in the photoelastic experiment, the precise identification of the branching points of force chains has not been effectively realized. Therefore, this study proposes an automatic extraction method of force chain key information. First, based on the Hough transform and the Euclidean distance, a particle geometric information identification model is established and geometric information such as particle circle center coordinates, radius, contact point location, and contact angle is extracted. Then, a particle contact force information identification model is established following the color gradient mean square method. The model realizes the rapid calibration and extraction of a large number of particle media contact force information. Next, combined with the force chain composition criterion and its quasilinear feature, an automatic extraction method of force chain information is established, which solves the problem of the accurate identification of the force chain branch points. Finally, in the photoelastic experiment of ore drawing from a single drawpoint, the automatic extraction method of force chain information is verified. The results show that the macroscopic distribution of force chains during ore drawing from a single drawpoint is left–right symmetrical. Strong force chains are mostly located on the two sides of the model but in small numbers and they mainly develop vertically. Additionally, the ends are mostly in a combination of Y and inverted Y shapes, while the middle is mostly quasilinear. Weak force chains are abundant and mostly distributed in the middle of the model, and develop in different directions. The proposed extraction method accurately extracts the force chain network from the photoelastic experiment images and dynamically characterizes the force chains of granular matter, which has significant advantages in particle geometry information extraction, force chain branch point discrimination, force chain retrieval, and force chain distribution and its azimuthal characterization. The results provide a scientific basis for studying the macroscopic and microscopic mechanical parameters of granular matter.  相似文献   

12.
We study the stress wave propagation in curved chains of particles (granular crystals) confined by bent elastic guides. We report the frequency- and amplitude-dependent filtering of transmitted waves in relation to various impact conditions and geometrical configurations. The granular crystals studied consist of alternating cylindrical and spherical particles pre-compressed with variable static loads. First, we excite the granular crystals with small-amplitude, broadband perturbations using a piezoelectric actuator to generate oscillatory elastic waves. We find that the linear frequency spectrum of the transmitted waves creates pass- and stop-bands in agreement with the theoretical dispersion relation, demonstrating the frequency-dependent filtering of input excitations through the diatomic granular crystals. Next, we excite high-amplitude nonlinear pulses in the crystals using striker impacts. Experimental tests verify the formation and propagation of highly nonlinear solitary waves that exhibit amplitude-dependent attenuation. We show that the wave propagation can be easily tuned by manipulating the pre-compression imposed to the chain or by varying the initial curvature of the granular chains. We use a combined discrete element (DE) and finite element (FE) numerical model to simulate the propagation of both dispersive linear waves and compactly-supported highly nonlinear waves. We find that the tunable, frequency- and amplitude-dependent filtering of the incoming signals results from the close interplay between the granular particles and the soft elastic media. The findings in this study suggest that hybrid structures composed of granular particles and linear elastic media can be employed as new passive acoustic filtering materials that selectively transmit or mitigate excitations in a desired range of frequencies and amplitudes.  相似文献   

13.
By the discrete element method (DEM), we perform numerical simulations of shock-induced load transfer processes in granular layers composed of spherical particles packed in vertical channels. In order to isolate the load transfer through the grains’ contact points from the complicated load transfer processes, we simulate the shock wave interactions with granular layers having no permeability for gas. The shock loading is achieved by applying a downward step force on the top of the granular layers. Complex, three-dimensional load transfer processes in the granular media, which are extremely difficult to understand from experiments, are visualized based on the results from the present DEM simulation. The numerical results show that highly concentrated load transfer paths, through which shock loads are transferred mainly, exist in the granular media, and that the dimensions of the container of the granular media considerably affect the shock-induced load transfer processes. From a coarse-grained representation of intergranular stress, wave-like load transfer processes are clearly observed. For relatively deep granular layers, however, the wave fronts became unclear as they propagated.  相似文献   

14.
The strain characteristic and load transmission of mixed granular matter are different from those of homogeneous granular matter. Cyclic loading renders the mechanical behaviours of mixed granular matter more complex. To investigate the dynamic responses of gravel–sand mixtures, the discrete element method (DEM) was used to simulate the cyclic loading of gravel–sand mixtures with low fines contents. Macroscopically, the evolution of the axial strain and volumetric strain was investigated. Mesoscopically, the coordination number and contact force anisotropy were studied, and the evolution of strong and weak contacts was explored from two dimensions of loading time and local space. The simulation results show that increasing fines content can accelerate the development of the axial strain and volumetric strain but has little effect on the evolution of contact forces. Strong contacts tend to develop along the loading boundary, presenting the spatial difference. Weak contacts are firstly controlled by confining pressure and then controlled by axial stress, while strong contacts are mainly controlled by axial stress throughout the whole cyclic loading. Once compression failure occurs, the release of axial stress causes the reduction of strong contact proportion in all local regions. These findings are helpful to understand the dynamic responses of gravel–sand mixtures, especially in deformation behaviours and the Spatio-temporal evolution of contact forces.  相似文献   

15.
The homogenization technique is used to obtain an elastoplastic stress–strain relationship for dry, saturated and unsaturated granular materials. Deformation of a representative volume of material is generated by mobilizing particle contacts in all orientations. In this way, the stress–strain relationship can be derived as an average of the mobilization behavior of these local contact planes. The local behavior is assumed to follow a Hertz–Mindlin’s elastic law and a Mohr–Coulomb’s plastic law. For the non-saturated state, capillary forces at the grain contacts are added to the contact forces created by an external load. They are calculated as a function of the degree of saturation, depending on the grain size distribution and on the void ratio of the granular assembly. Numerical simulations show that the model is capable of reproducing the major trends of a partially saturated granular assembly under various stress and water content conditions. The model predictions are compared to experimental results on saturated and unsaturated samples of silty sands under undrained triaxial loading condition. This comparison shows that the model is able to account for the influence of capillary forces on the stress–strain response of the granular materials and therefore, to reproduce the overall mechanical behavior of unsaturated granular materials.  相似文献   

16.
Plastic deformation of granular materials is investigated from the micromechanical viewpoint, in which the assembly of particles and interparticle contacts is considered as a mechanical structure. This is done in three ways. Firstly, by investigating the degree of redundancy of the system by comparing the number of force degrees of freedom at contacts with the number of governing equilibrium equations; Secondly, by determining the spectrum of eigenvalues of the stiffness matrix for the structure that is represented by the particles and their contacts; Thirdly, by investigating the evolution with imposed strain of the continuum elastic stiffness tensor of the system. It is found that, with increasing imposed strain, the degree of redundancy rapidly evolves towards a state with small redundancy, i.e. the system becomes nearly statically determinate. The spectrum of the system shows many singular and near-singular modes at peak shear strength and at large strain. The continuum elastic stiffness tensor becomes strongly anisotropic with increasing imposed strain and shows strong non-affinity of deformation. The assumption of a constant and isotropic elastic stiffness tensor in elasto-plastic continuum constitutive relations for granular materials is generally incorrect. Overall, the plastic continuum behaviour of granular materials originates from the plastic frictional behaviour at contacts and from damage in the form of changes in the contact network.  相似文献   

17.
This paper investigates the definition of the stress tensor within a granular assembly, when inertial effects are likely to occur. It is shown that the stress tensor can be expressed as a sum of two terms. A first term corresponds to the standard definition of the stress, according to the Love–Weber formula; this term is related to the contact forces existing within adjoining particles. A second term accounts for dynamic effects related to rotation velocities and accelerations of the particles. These results are checked from discrete numerical simulations in order to examine in which context the contribution of inertial effects should not be omitted. With this aim, the simulation of a granular specimen collapse and then a silo discharge is considered.  相似文献   

18.
The local mechanical behavior of fatigued steel specimens was probed using nanoindentation. High-carbon steel cantilevers were exposed to nonlinear harmonic oscillation. The indentation modulus on the beam surface and plastic work during indentation decreased as a function of cycles, which was attributed to grain fragmentation and reorientation as well as the continuous reduction in inherent energy dissipation capacity of the material. X-ray diffraction, electron backscatter diffraction, and atomic force microscopy were used to characterize this microstructural evolution during early stages of the beam fatigue life, which altered 1) the local mechanical properties and 2) the global structural dynamic response. The results provide insight into fatigue damage precursors and provides a framework for connecting materials evolution with nonlinear structural dynamics.  相似文献   

19.
考虑颗粒转矩的接触网络诱发各向异性分析   总被引:1,自引:1,他引:0  
颗粒材料的宏观力学行为与接触网络的组构各向异性密切相关, 根据接触点的滑动与否、转动与否和强弱力情况, 可以将颗粒间的接触系统分为不同的子接触网络. 一般而言, 不同的子接触网络在颗粒体系中的传力机制不同, 对宏观力学响应的贡献也有不同. 采用离散单元法(discrete element method, DEM)模拟了不同抗转动系数$\mu_r$下颗粒材料三轴剪切试验, 分析了剪切过程中不同子接触网络的组构张量的演变规律, 并探究了颗粒抗转动效应对子接触网络各向异性指标演变规律的影响. 研究发现: 剪切过程中转动、非转动接触的组构张量变化不是独立的, 受到颗粒间滑动与否的影响; 非滑动、强接触网络是颗粒间的主要传力结构, 非滑动接触网络的接触法向和法向接触力各向异性均随$\mu_r$的增大而增大, 其对宏观应力的贡献程度随$\mu_r$的增大而减小;强接触网络的接触法向各向异性随$\mu_r$的增大而增大, 但法向接触力各向异性随$\mu_r$的增大无明显变化, 强接触网络对宏观应力的贡献程度在不同$\mu_r$情况下均相同.   相似文献   

20.
The static and dynamic indentation of structural elements such as beams and plates continue to be intriguing problems, especially for scenarios where large area contacts are expected to occur. Standard methods of indentation analyses use a beam theory solution to obtain an overall load–displacement relationship and then a Hertzian contact solution to calculate local stresses under the indenter. However, these techniques are only applicable in a fairly limited class of problems: the stress distribution in the contact region will differ significantly from a Hertzian one when the contact length exceeds the thickness of the beam. The indentation models developed herein are improvements over existing GLOBAL/LOCAL models for static and dynamic indentation of cantilever beams. Maximum contact stresses, beam displacements, and contact force time histories are obtained and compared with the predictions of current static and dynamic indentation models. The validity of the solutions presented herein is further assessed by comparing the results obtained to the predictions of modified beam theory solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号