首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A set of constitutive equations for large rate-dependent elastic-plastic-damage materials at elevated temperatures is presented to be able to analyze adiabatic high strain rate deformation processes for a wide range of stress triaxialities. The model is based on the concepts of continuum damage mechanics. Since the material macroscopic thermo-mechanical response under large strain and high strain rate deformation loading is governed by different physical mechanisms, a multi-dissipative approach is proposed. It incorporates thermo-mechanical coupling effects as well as internal dissipative mechanisms through rate-dependent constitutive relations with a set of internal variables. In addition, the effect of stress triaxiality on the onset and evolution of plastic flow, damage and failure is discussed.Furthermore, the algorithm for numerical integration of the coupled constitutive rate equations is presented. It relies on operator split methodology resulting in an inelastic predictor-elastic corrector technique. The explicit finite element program LS-DYNA augmented by an user-defined material subroutine is used to approximate boundary-value problems under dynamic loading conditions. Numerical simulations of dynamic experiments with different specimens are performed and good correlation of numerical results and published experimental data is achieved. Based on numerical studies modified specimens geometries are proposed to be able to detect complex damage and failure mechanisms in Hopkinson-Bar experiments.  相似文献   

2.
The procedure for reuse of finite element method (FEM) programs for heat transfer and structure analysis to solve advanced thermo-mechanical problems is presented as powerful algorithm applicable for coupling of other physical fields (magnetic, fluid flow, etc.). In this case, nonlinear Block-Gauss–Seidel partitioned algorithm strongly couples the heat transfer and structural FEM programs by a component-based software engineering. Component template library provides possibility to exchange the data between the components which solve the corresponding subproblems. The structural component evaluates the dissipative energy induced by inelastic strain. The heat transfer component computes the temperature change due to the dissipation. The convergence is guaranteed by posing the global convergence criterion on the previously locally converged coupled variables. This enables reuse of software and allows the numerical simulation of thermo-sensitive problems.  相似文献   

3.
基于电子-声子相互作用的双曲两步热传导模型的超快热弹性理论,计及晶格的热传导效应,利用有限元方法研究了无限大金属薄膜在短暂激光冲击下诱导的位移、应力、应变和温度等物理量的演化特点,与已有文献比较,说明该方法的合理性与正确性.比较了计及电子热爆发力与不计电子热爆发力对位移、应力等物理量的影响,说明计及电子热爆发力的必要性...  相似文献   

4.
We study the coupled thermo-mechanical problem that is obtained by combining generalized standard materials with Fourier’s law for heat conduction. The analysis is conducted in the framework of non-smooth mechanics in order to account for possible constraints on the state variables. This allows models of damage and phase-transformation to be included in the analysis. In view of performing numerical simulations, an incremental thermo-mechanical problem and corresponding variational principles are introduced. Conditions for existence of solutions to the incremental problem are discussed and compared with the isothermal case. The numerical implementation of the proposed approach is studied in detail. In particular, it is shown that the incremental thermo-mechanical problem can be recast as a concave maximization problem and ultimately amounts to solve a sequence of linear thermal problems and purely mechanical (i.e. at a prescribed temperature field) problems. Therefore, using the proposed approach, thermo-mechanical coupling can be implemented with low additional complexity compared to the isothermal case, while still relying on a sound mathematical framework. As an application, thermo-mechanical coupling in shape memory alloys is studied. The influence of the loading strain-rate on the phase transformation and on the overall stress–strain response is investigated, as well as the influence of the thermal boundary conditions. The numerical results obtained by the proposed approach are compared with numerical and experimental results from the literature.  相似文献   

5.
For a strip wall erected on a rigid strip foundation and supported by the surface of the ground, the dynamic soil-structure interaction under the action of the horizontal ground motion is investigated. The ground motion is idealized as vertically propagating, horizontal steady-state motion. Because the horizontal ground motion brings about the sliding vibration of the foundation as well as the rocking vibration, the coupled rocking and sliding vibration of the soil-structure system is considered in the present paper. For the contact between the ground and foundation, the following assumptions are made: 1) the contact is assumed to be welded, that is to say, the motion of the foundation is consistent with the ground; 2) the horizontal translation at each point on the bottom surface of the foundation is equal to a constant; 3) the distribution of the normal displacements under the foundation remains to be linear in the rocking vibration. For comparison, the case of uncoupled vibration is considered also. The use of Fourier transform method yields dual integral equations (for the case without coupling effect) or simultaneous dual integral equations (for the case with coupling effect). Both of them are solved by means of infinite series of orthogonal functions, the Jacobi polynomials. The numerical results show that there is a significant difference between the displacements of the foundation, the relative displacements of the top of the wall with respect to its base, and the distribution of contact stresses beneath the foundation, for the cases with and without coupling effect.  相似文献   

6.
In this study plate-impact pressure-shear friction experiments are employed to investigate dynamic slip resistance and time-resolved growth of molten metal films during dry metal-on-metal slip under extreme interfacial conditions. By employing a tribo-pair comprising of a hard tool-steel against a relatively low melt-point metal (7075-T6 Al alloy), interfacial normal stress of up to 5 GPa and slip speeds of approximately 250 m/s have been achieved. These extreme interfacial conditions are conducive to the development of molten metal film at the tribo-pair interface. A Lagrangian finite element code is developed to understand the evolution of the thermo-mechanical fields and their relationship to the observed slip response. The code accounts for dynamic effects, heat conduction, contact with friction, and full thermo-mechanical coupling. At temperatures below the melting point of the tribo-pair materials are described as isotropic, thermally softening, elastic–viscoplastic solids. For material elements with temperatures in excess of the melt temperature a purely Newtonian fluid constitutive model is employed.  相似文献   

7.
Coupled thermo-mechanical analysis of two bonded functionally graded materials subjected to thermal loads is conducted in this study with the graded finite element method. The thermal-mechanical properties of the bi-material interfaces are classified based on discontinuity degrees of their material properties and their derivatives at the interfaces. Numerical results indicate that discontinuity exerts remarkable effect on the temperature profile and stress value at the interface of two bonded functionally-graded materials. Under the thermal flux loading conditions, the stronger the interface discontinuity is, the smaller the heat flux is.  相似文献   

8.
The dynamic behavior of two parallel symmetry cracks in magneto-electro-elastic composites under harmonic anti-plane shear waves is studied by Schmidt method. By using the Fourier transform, the problem can be solved with a pair of dual integral equations in which the unknown variable is the jumps of the displacements across the crack surfaces. To solve the dual integral equations, the jumps of the displacements across the crack surface were expanded in a series of Jacobi polynomials. The relations among the electric filed, the magnetic flux and the stress field were obtained. From the results, it can be obtained that the singular stresses in piezoelectric/piezomagnetic materials carry the same forms as those in a general elastic material for the dynamic anti-plane shear fracture problem. The shielding effect of two parallel cracks was also discussed.  相似文献   

9.
It is noted that the behavior of most piezoelectric materials is temperature dependent and such piezo-thermo-elastic coupling phenomenon has become even more pronounced in the case of finite deformation. On the other hand, for the purpose of precise shape and vibration control of piezoelectric smart structures, their deformation under external excitation must be ideally modeled. This demands a thorough study of the coupled piezo-thermo-elastic response under finite deformation. In this study, the governing equations of piezoelectric structures are formulated through the theory of virtual displacement principle and a finite element method is developed. It should be emphasized that in the finite element method the fully coupled piezo-thermo-elastic behavior and the geometric non-linearity are considered. The method developed is then applied to simulate the dynamic and steady response of a clamped plate to heat flux acting on one side of the plate to mimic the behavior of a battery plate of satelite irradiated under the sun. The results obtained are compared against classical solutions, whereby the thermal conductivity is assumed to be independent of deformation. It is found that the full-coupled theory predicts less transient response of the temperature compared to the classic analysis. In the steady state limit, the predicted temperature distribution within the plate for small heat flux is almost the same for both analyses. However, it is noted that increasing the heat flux will increase the deviation between the predictions of the temperature distribution by the full coupled theory and by the classic analysis. It is concluded from the present study that, in order to precisely predict the deformation of smart structures, the piezo-thermo-elastic coupling, geometric non-linearity and the deformation dependent thermal conductivity should be taken into account. Project supported by the National Natural Science Foundation of China (Nos. 10132010 and 50135030) and the Foundation of In-service Doctors of Xi'an Jiaotong University.  相似文献   

10.
Modeling strategies aimed at thermo-mechanical coupled problems has been developed for a wide range of engineering applications. Staggered-type coupling procedures have been largely used in materials processing operations, especially in commercial codes, owing to their simplicity and flexibility. The present work shows that, in thermo-plastic problems, the classical implementation of the most common coupling procedure may present accuracy issues and time-stepping dependency. Numerical experiments indicate that an iterative coupling scheme constitutes a viable and simple approach to this class of problems.  相似文献   

11.
We analyze the results of experimental studies of effective strain properties of damaged, porous, and other inhomogeneous materials and study the main laws of their behavior under strain. We consider the possible versions of constitutive relations taking account of the dependence of the properties of the media under study on the loading conditions or the strain conditions and the relations between the shear and bulk strains. Since the traditional statement of the torsion problems for bodies with such properties cannot be used, we analyze the strain consistency equations and the relations between the strains and displacements in cylindrical coordinates and obtain expressions for the displacements in an appropriate generalized form, which can be used not only for the torsion problems. We study how the distributions of displacements, strains, and stresses under torsion depend on the parameter characterizing the susceptibility of the material strain properties to variations in the stress state type. We show that, in the case of torsion of a cylinder of circular cross-section, there is no deplanation of the cross-section, just as in the classical solution, but the distributions of displacements, strains, and stresses significantly differ from the well-known solutions.  相似文献   

12.
基于均质材料的拓扑优化逐渐难以适应现代化生产对工业产品高品质、轻量化的需求,同时很多工业设备经常面临着高温和高负载的工作环境.为了提高结构在温度载荷和机械载荷共同作用下的力学性能,本文提出了一种在稳态热源作用下的热固耦合连续体结构并行化拓扑优化方法.以结构刚度作为目标函数,材料的体分比为约束,利用能量均匀化方法预测微结构的等效属性,建立热固耦合结构并行化拓扑优化数学模型.为便于数值计算,利用直接法进行灵敏度分析,同时采用Heaviside非线性密度过滤技术抑制数值不稳定性,将OC准则算法用于求解优化问题.数值算例表明,本文方法能够有效地进行优化设计且能显著地提高结构的刚度性能和散热性能.  相似文献   

13.
14.
计及材料物性与温度的相关性,基于Green-Naghdi能量无耗散广义热弹性理论(G-N II理论),对热冲击下具有变物性特征材料的热弹性响应进行了求解分析。借助Laplace正、反变换技术以及Krichhoff变换,在热物性参数随真实温度呈线性规律的前提下,推导了半无限大体受热冲击作用时热弹性响应的解析表达式,通过求解分析,得到了热冲击下热波、热弹性波的传播规律,位移场、温度场以及应力场的分布情况,以及物性随温度相关性对热弹性响应的影响效果。结果表明:当考虑材料物性随温度的变化时,热波、热弹性波的传播以及各物理场的分布均受到不同程度的影响,且物性随温度相关性对热弹性响应的作用效果将受到材料热-力耦合特性的影响。  相似文献   

15.
The fundamental equations in finite element method for unsteady temperature field elastic plane problem are derived on the bases of variational principle of coupled thermoelastic problems. In these derivations, elastic plane is divided into three nodes triangular elements, and time interval is divided into linear time elements, in which all the variables, including displacements and temperatures at various nodal points, are varied linearly with time. Two coupled sets of linear algebraic equations of all the unknown displacements and temperatures at every nodal point in every instant (i.e. the terminal values of time elements) are obtained. They are the fundamental equations of the said problem.The total energy in elastic body not only contains the potential energy and heat energy but also contains the kinetic energy, if the rate of change of temperature field with respect to the time in thermoelastic problem is large enough. And the change of displacement is included in the equations of heat conduction. For this reason the variational principle of coupled thermoelastic problems is employed. [1] In this paper, expressions of this principle for plane problems are given. The discretization is carried on then, and Hamilton's action and the potential action of heat flow of elements are derived. Finally they are assembled, so as to get the polar value of the action. And thus the groups of linear algebraic equations in matrix form are obtained.  相似文献   

16.
刘硕  方国东  王兵  付茂青  梁军 《力学学报》2018,50(2):339-348
求解含裂纹等不连续问题一直是计算力学的重点研究课题之一,以偏微分方程为基础的连续介质力学方法处理不连续问题时面临很大的困难. 近场动力学方法是一种基于积分方程的非局部理论,在处理不连续问题时有很大的优越性. 本文提出了求解含裂纹热传导问题的一种新的近场动力学与有限元法的耦合方法. 结合近场动力学方法处理不连续问题的优势以及有限元方法计算效率高的优势,将求解区域划分为两个区域,近场动力学区域和有限元区域. 包含裂纹的区域采用近场动力学方法建模,其他区域采用有限元方法建模. 本文提出的耦合方案实施简单方便,近场动力学区域与有限元区域之间不需要设置重叠区域. 耦合方法通过近场动力学粒子与其域内所有粒子(包括近场动力学粒子和有限元节点)以非局部方式连接,有限元节点与其周围的所有粒子以有限元方式相互作用. 将有限元热传导矩阵和近场动力学粒子相互作用矩阵写入同一整体热传导矩阵中,并采用Guyan缩聚法进一步减小计算量. 分别采用连续介质力学方法和近场动力学方法对一维以及二维温度场算例进行模拟,结果表明,本文的耦合方法具有较高的计算精度和计算效率. 该耦合方案可以进一步拓展到热力耦合条件下含裂纹材料和结构的裂纹扩展问题.   相似文献   

17.
The purpose of this research is to investigate the basic issues that arise when generalized plane strain deformations are superimposed on anti-plane shear deformations in isotropic incompressible hyperelastic materials. Attention is confined to a subclass of such materials for which the strain-energy density depends only on the first invariant of the strain tensor. The governing equations of equilibrium are a coupled system of three nonlinear partial differential equations for three displacement fields. It is shown that, for general plane domains, this system decouples the plane and anti-plane displacements only for the case of a neo-Hookean material. Even in this case, the stress field involves coupling of both deformations. For generalized neo-Hookean materials, universal relations may be used in some situations to uncouple the governing equations. It is shown that some of the results are also valid for inhomogeneous materials and for elastodynamics.  相似文献   

18.
Although Large Eddy Simulation (LES) is identified today as the most promising method for turbulent flow problems, few applications of LES coupled to heat transfer solvers in solids have been published. This paper describes a coupling strategy of a LES solver and a heat transfer code within solids on parallel architectures. The numerical methods used in both solvers are briefly recalled before discussing the coupling strategy in terms of physical quantities to exchange (fluxes and temperatures), stability and parallel efficiency. The stability study is performed using an amplification matrix analysis on a one-dimensional case and allows the determination and optimization of coupling parameters. The coupled tool is then applied to a cooled turbine blade model where results demonstrate both the efficiency of the parallel implementation and the quality of the results. Coupled and non-coupled simulations are compared to experimental results and discussed in terms of cooling efficiency and flow structures.  相似文献   

19.
采用有限元方法研究了结构在热载荷作用下变形与热传导之间的耦合特性.分析表明,结构变形较小,非线性效应很弱时,变形对材料的热传导系数影响很小,对结构的温度分布几乎没有影响;当变形增大,非线性效应增强时,变形对材料的热传导特性影响显著,热载荷作用下结构的温度变化和变形与现行不考虑热-机耦合效应所得结果产生明显差异.因此,为实现压电智能结构形状(振动)的精确控制,分析及实施控制时须考虑热-机耦合及变形对热传导系数的影响.  相似文献   

20.
A fluid dynamic model for a gas-solid circulating fluidized bed (CFB) designed using two coupled riser reactors is developed and implemented numerically with code programmed in Matlab. The fluid dynamic model contains heat and species mass balances to calculate temperatures and compositions for a carbonation/calcination loop process. Because of the high computational costs required to resolve the three-dimensional phenomena, a model representing a trade-offbetween computational time requirements and accuracy is developed. For dynamic processes with a solid flux between the two reactor units that depends on the fluid dynamics of both risers, a dynamic one-dimensional two-fluid model is sufficient. A two-fluid model using the constant particle viscosity closure for the stress term is used for the solid phase, and an algebraic turbulence model is applied to the gas phase. The numerical model implementa- tion is based on the finite volume method with a staggered grid scheme. The exchange of solids between the reactor units constituting the circulating fluidized bed (solid flux) is implemented through additional mass source/sink terms in the continuity equations of the two phases, For model validation, a relevant experimental analysis provided in the literature is reproduced by the numerical simulations, The numerical analysis indicates that sufficient heat integration between the two reactor units is important for the performance of the circulating fluidized bed system, The two-fluid model performs fairly well for this chemical process operated in a CFB designed as two coupled riser reactors. Further analysis and optimization of the solution algorithms and the reactor coupling strategy is warranted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号