首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
The previous experimental analysis has indicated the existence to two major modes of oscillations, i.e., Density-Wave (high frequency) and Pressure-Drop (low frequency) Oscillations in single channel, electrically heated, forced convection upflow systems. In this work the stability of such a system is investigated theoretically and the results are compared with experimental findings obtained by the authors. The Homogeneous Phase Equilibrium model is used to describe the two-phase flow characteristics. The friction between the pipe wall and the expanding fluid is modeled using the Moody friction factor assuming an effective two-phase viscosity. Gravitational forces are included and heat transfer into the fluid is assumed to be the function of the wall temperature, fluid temperature and heat transfer coefficient which is also assumed to be a function of the flow rate. Though simple, this model is found to be very satisfactory in simulating both modes of oscillations with acceptable accuracy. The physical nature of each mode is different and distinct, therefore, separate solution methods are developed for each case. The Steady-State Flow Characteristics are obtained for various heat inputs and inlet temperatures by solving the conservation equations together with the equation of state by using an Implicit Finite- Difference technique. In the analysis of low frequency oscillations it is assumed that the quasi-steady state conditions prevail in the heater. The system equations obtained with this assumption are solved under constant exit pressure and constant container pressure boundary conditions using the finite-difference technique. Two methods of approach are adapted in solving the non-linear hyperbolic equations which describe the system at low mass flow rates where the density-wave type oscillations are observed. They are the Explicit Integral Momentum method (EIM) and the Explicit Finite-Difference method (EFD). A comparison of the results with experiments and other mathematical models is discussed.  相似文献   

2.
Two-phase flow instabilities are highly undesirable in microchannels-based heat sinks as they can lead to temperature oscillations with high amplitudes, premature critical heat flux and mechanical vibrations. This work is an experimental study of boiling instabilities in a microchannel silicon heat sink with 40 parallel rectangular microchannels, having a length of 15 mm and a hydraulic diameter of 194 μm. A series of experiments have been carried out to investigate pressure and temperature oscillations during the flow boiling instabilities under uniform heating, using water as a cooling liquid. Thin nickel film thermometers, integrated on the back side of a heat sink with microchannels, were used in order to obtain a better insight related to temperature fluctuations caused by two-phase flow instabilities. Flow regime maps are presented for two inlet water temperatures, showing stable and unstable flow regimes. It was observed that boiling leads to asymmetrical flow distribution within microchannels that result in high temperature non-uniformity and the simultaneously existence of different flow regimes along the transverse direction. Two types of two-phase flow instabilities with appreciable pressure and temperature fluctuations were observed, that depended on the heat to mass flux ratio and inlet water temperature. These were high amplitude/low frequency and low amplitude/high frequency instabilities. High speed camera imaging, performed simultaneously with pressure and temperature measurements, showed that inlet/outlet pressure and the temperature fluctuations existed due to alternation between liquid/two-phase/vapour flows. It was also determined that the inlet water subcooling condition affects the magnitudes of the temperature oscillations in two-phase flow instabilities and flow distribution within the microchannels.  相似文献   

3.
在急剧温度变化等强间断温度冲击作用下的生物层合组织非傅里叶热传导分析中,经典时域连续有限元方法(如Newmark等方法)会在波阵面以后的和层合组织界面附近的区域表现出强烈的数值振荡。这类数值振荡会影响问题求解精度,并带来较大不确定性。针对这类现象,本文发展了改进时域间断Galerkin有限元方法,进一步开展了相关问题的数值模拟。其控制方程的基本未知数(温度)及其时间导数在指定时间间隔内假设存在间断且独立插值。在有限元离散列式中引入比例刚度阵人工阻尼,以成功消除波前位置的虚假数值振荡行为。通过算例对比分析,相比Newmark方法和传统间断Galerkin方法,所提出的改进时域间断Galerkin有限元方法较好消除了波前、波后以及组织界面处的数值振荡,有效捕捉了波阵面的间断行为,提高了计算的精度。  相似文献   

4.
The present paper reports on a numerical simulation and experimental validation of fluid flow and conjugate heat transfer characteristics of new vascular channels, whose cross-sections are semi-circular. The numerical analysis covers the Reynolds number range of 30−2000, with a cooling channel volume fraction of 0.04, pressure drop range of 30−105 Pa. Six flow configurations were considered: first, second, and third constructal structures with optimized hydraulic diameters and non-optimized hydraulic diameter for each system size 10 × 10, 20 × 20, and 50 × 50, respectively. The numerical results of the proposed vascular channels show that the channel configurations of the optimized constructs show much lower flow resistance and temperature distribution than those of the non-optimized constructs. It is also shown that the power component in the power-law relationship between mass flow rate and pressure drop decreases as the system size and mass flow rates increase. The numerical results are validated by experimental data, and with the two exhibiting excellent agreement in all cases. The validation study against the experimental data shows that the presented numerical model is a reliable tool for predicting the performance of cooling plates under practical operating conditions and for the design of self healing or cooling system.  相似文献   

5.
A time-varying flow through a porous medium of a dusty viscous incompressible Bingham fluid in a circular pipe is studied. A constant pressure gradient is applied in the axial direction, whereas the particle phase is assumed to behave as a viscous fluid. The effect of the medium porosity, the non-Newtonian fluid characteristics, and the particle phase viscosity on the transient behavior of the velocity, volumetric flow rates, and skin friction coefficients of both the fluid and particle phases is investigated. A numerical solution is obtained for the governing nonlinear momentum equations by using the method of finite differences.  相似文献   

6.
用于低温风洞的新颖制冷方法   总被引:2,自引:0,他引:2  
俞鸿儒  廖达雄 《力学学报》1999,31(6):645-651
描述了用于低温风洞的新颖制冷系统,利用热交换器回收排气冷量预冷压缩空气,然后再用热分离器将其降至深低温作风洞气源.原理性实验结果证实新制冷方法的可行性.讨论了新制冷方法产生的有一定压力的低温空气作引射气源,引射驱动回流型风洞的特性.其制冷方法与现有低温风洞喷雾液氮制冷相比,由于仅需压缩空气而无需液氮,造价更便宜.更由于能量利用合理,效率高,因而运行成本可显著降低.  相似文献   

7.

A numerical analysis is made to analyze the variable porosity and thermal dispersion effects on the vortex mode of instability of a horizontal natural convection boundary layer flow in a saturated porous medium. The porosity of the medium is assumed to vary exponentially with distance from the wall. In the base flow, the governing equations are solved by using a suitable variable transformation and employing an implicit finite difference Keller Box method. The stability analysis is based on the linear stability theory and the resulting eigenvalue problem is solved by the local similarity approximations. The results indicate that both effects increase the heat transfer rate. In addition, the thermal dispersion effect stabilizes the flow to the vortex mode of disturbance, while the variable porosity effect destabilizes it.

  相似文献   

8.
The existence of axial–radial acoustic resonance oscillations of the basic air flow in bleed channels of aviation engines is demonstrated theoretically and experimentally. Numerical and analytical methods are used to determine the frequency of acoustic resonance oscillations for the lowest modes of open and closed bleed channels of the PS-90A engine. Experimental investigations reveal new acoustic resonance phenomena arising in the air flow in bleed channel cavities in the core duct of this engine owing to instability of the basic air flow. The results of numerical, analytical, and experimental studies of the resonance frequencies reached in the flow in bleed channel cavities in the core duct of the PS-90A engine are found to be in reasonable agreement. As a result, various types of resonance oscillations in bleed channels can be accurately described.  相似文献   

9.
This article presents a numerical approach to investigate the transpiration cooling problems with coolant phase change within porous matrix. A new model is based on the coupling of the two-phase mixture model (TPMM) with the local thermal non- equilibrium (LTNE), and used to describe the liquid coolant phase change and heat exchange processes in this article. The effects of thermal conductivity, porosity, and sphere diameter of the porous matrix on the temperature and saturation distributions within the matrix are studied. The results indicate that an increase in the porosity or sphere diameter can lead to an area dilation of two-phase region and a rise of liquid temperature; whereas an increase in the thermal conductivity of the porous matrix results only in a rise of liquid temperature, but drops of solid temperature and temperature gradient on the hot surface. The influence of hot surface pressure on cooling effect is discussed by numerical simulations, and numerical results show that the effect of the transpiration cooling will be worse under higher pressure. The investigation also discovers an inverse phenomenon to the past investigations on the transpiration cooling without coolant phase change, namely in two-phase region, coolant temperature may be higher than solid temperature. This inversion can be captured only by the new LTNE–TPMM.  相似文献   

10.
A rescaling methodology is developed for high-fidelity, cost-efficient direct numerical simulations (DNS) of flow through porous media, modelled at mesoscopic scale, in a hypersonic freestream. The simulations consider a Mach 5 hypersonic flow over a flat plate with coolant injection from a porous layer with 42 % porosity. The porous layer is designed using a configuration studied in the literature, consisting of a staggered arrangement of cylinder/sphere elements. A characteristic Reynolds number Rec of the flow in a pore cell unit is first used to impose aerodynamic similarity between different porous layers with the same porosity, , but different pore size. A relation between the pressure drop and the Reynolds number is derived to allow a controlled rescaling of the pore size from the realistic micrometre scales to higher and more affordable scales. Results of simulations carried out for higher cylinder diameters, namely 24 μm, 48 μm and 96 μm, demonstrate that an equivalent Darcy-Forchheimer behaviour to the reference experimental microstructure is obtained at the different pore sizes. The approach of a porous layer with staggered spheres is applied to a 3D domain case of porous injection in the Darcy limit over a flat plate, to study the transition mechanism and the associated cooling performance, in comparison with a reference case of slot injection. Results of the direct numerical simulations show that porous injection in an unstable boundary layer leads to a more rapid transition process, compared to slot injection. On the other hand, the mixing of coolant within the boundary layer is enhanced in the porous injection case, both in the immediate outer region of the porous layer and in the turbulent region. This has the beneficial effect of increasing the cooling performance by reducing the temperature near the wall, which provides a higher cooling effectiveness, compared to the slot injection case, even with an earlier transition to turbulence.  相似文献   

11.
In real flows unsteady phenomena connected with the circumferential non-uniformity of the main flow and those caused by oscillations of blades are observed only jointly. An understanding of the physics of the mutual interaction between gas flow and oscillating blades and the development of predictive capabilities are essential for improved overall efficiency, durability and reliability. In the study presented, the algorithm proposed involves the coupled solution of 3D unsteady flow through a turbine stage and the dynamics problem for rotor-blade motion by the action of aerodynamic forces, without separating the outer and inner flow fluctuations. The partially integrated method involves the solution of the fluid and structural equations separately, but information is exchanged at each time step, so that solution from one domain is used as a boundary condition for the other domain. 3-D transonic gas flow through the stator and rotor blades in relative motion with periodicity on the whole annulus is described by the unsteady Euler conservation equations, which are integrated using the explicit monotonous finite volume difference scheme of Godunov–Kolgan. The structural analysis uses the modal approach and a 3-D finite element model of a blade. The blade motion is assumed to be constituted as a linear combination of the first natural modes of blade oscillations, with the modal coefficients depending on time. A calculation has been done for the last stage of the steam turbine, under design and off-design regimes. The numerical results for unsteady aerodynamic forces due to stator–rotor interaction are compared with results obtained while taking into account blade oscillations. The mutual influence of both outer flow non-uniformity and blade oscillations has been investigated. It is shown that the amplitude-frequency spectrum of blade oscillations contains the high-frequency harmonics, corresponding to the rotor moving past one stator blade pitch, and low-frequency harmonics caused by blade oscillations and flow non-uniformity downstream from the blade row; moreover, the spectrum involves the harmonics which are not multiples of the rotation frequency.  相似文献   

12.
This paper presents a three‐dimensional (3D) solution algorithm for solving the sequential co‐injection moulding process. The flow of skin and core materials inside a rectangular cavity is investigated both numerically and experimentally. A 3D finite element flow analysis code is used to solve the governing equations of the non‐isothermal sequential co‐injection moulding. The predicted flow front behaviour is compared to the experimental observations for various skin/core volume ratio, injection speed, injection temperature, and core injection delay. Simulation results are in good agreement with experimental data and indicate correctly the trends in solution change when processing parameters are changing. Solutions are also shown for the filling of a spiral‐flow mould. The numerical approach is shown to predict the core expansion phase during which the flow front of core and skin materials advance together without breakthrough. Breakthrough phenomena is also predicted and the numerical solution is in good agreement with the experiment. Copyright © 2005 Crown in the right of Canada. Published by John Wiley & Sons, Ltd.  相似文献   

13.
Turbulent drag reduction by spanwise wall oscillations   总被引:1,自引:0,他引:1  
In the present work a technique is numerically investigated, which is aimed at reducing the friction drag in turbulent boundary layers and channel flows. A cyclic spanwise oscillation of the wall with a proper frequency and amplitude is imposed, allowing a reduction of the turbulent drag of up to 40%. The present work is based on the numerical simulation of the Navier-Stokes equations in the simple geometry of a plane channel flow. The frequency of the oscillations is kept fixed at the most efficient value determined in previous studies, while the choice of the best value for the amplitude of the oscillations is evaluated not only in terms of friction reduction, but also by taking into consideration the overall energy balance and the power spent for the motion of the wall. The analysis of turbulence statistics allows to shed some light on the way oscillations interact with wall turbulence, as illustrated by visual inspection of some instantaneous flow fields. Finally, a simple explanation is proposed for this interaction, which leads to a rough estimate of the most efficient value for the frequency of the oscillations.  相似文献   

14.
A. Ishak  R. Nazar  I. Pop 《Meccanica》2006,41(5):509-518
An analysis is made for the steady mixed convection boundary layer flow near the two-dimensional stagnation-point flow of an incompressible viscous fluid over a stretching vertical sheet in its own plane. The stretching velocity and the surface temperature are assumed to vary linearly with the distance from the stagnation-point. Two equal and opposite forces are impulsively applied along the x-axis so that the wall is stretched, keeping the origin fixed in a viscous fluid of constant ambient temperature. The transformed ordinary differential equations are solved numerically for some values of the parameters involved using a very efficient numerical scheme known as the Keller-box method. The features of the flow and heat transfer characteristics are analyzed and discussed in detail. Both cases of assisting and opposing flows are considered. It is observed that, for assisting flow, both the skin friction coefficient and the local Nusselt number increase as the buoyancy parameter increases, while only the local Nusselt number increases but the skin friction coefficient decreases as the Prandtl number increases. For opposing flow, both the skin friction coefficient and the local Nusselt number decrease as the buoyancy parameter increases, but both increase as Pr increases. Comparison with known results is excellent.  相似文献   

15.
A study of the stability of an electrically heated single channel, forced convection horizontal system was conducted by using Freon-11 as the test fluid. Two major modes of oscillations, namely, density-wave type (high frequency) and pressure-drop type (low frequency) oscillations have been observed. The steady-state operating characteristics and stable and unstable regions are determined as a function of heat flux, exit orifice diameter and mass flow rate. Different modes of oscillations and their characteristics have been investigated. The effect of the exit restriction on the system stability has also been studied.A mathematical model has been developed to predict the transient behavior of boiling two-phase systems. The model is based on homogenous flow assumption and thermodynamic equilibrium between the liquid and vapor phases. The transient characteristics of boiling two-phase flow horizontal system are obtained for various heat inputs, flow rates and exit orifice diameters by perturbing the governing equations around a steady state. Theoretical and experimental results have been compared.  相似文献   

16.
This paper presents the results of an experimental study of the unsteady nature of a hypersonic separated turbulent flow. The nomimal test conditions were a freestream Mach number of 7.8 and a unit Reynolds number of 3.5×107/m. The separated flow was generated using finite span forward facing steps. An array of flush mounted high spatial resolution and fast response platinum film resistance thermometers was used to make multi-channel measurements of the fluctuating surface heat trtansfer within the separated flow. Conditional sampling analysis of the signals shows that the root of separation shock wave consists of a series of compression wave extending over a streamwise length about one half of the incoming boundary layer thickness. The compression waves converge into a single leading shock beyond the boundary layer. The shock structure is unsteady and undergoes large-scale motion in the streamwise direction. The length scale of the motion is about 22 percent of the upstream influence length of the separation shock wave. There exists a wide band of frequency of oscillations of the shock system. Most of the frequencies are in the range of 1–3 kHz. The heat transfer fluctuates intermittently between the undisturbed level and the disturbed level within the range of motion of the separation shock wave. This intermittent phenomenon is considered as the consequence of the large-scale shock system oscillations. Downstream of the range of shock wave motion there is a separated region where the flow experiences continuous compression and no intermittency phenomenon is observed. The project supported by National Natural Science Foundation of China  相似文献   

17.
Limit cycle oscillations (LCO) as well as nonlinear aeroelastic analysis of rectangular cantilever wings with a cubic nonlinearity are investigated. Aeroelastic equations of a rectangular cantilever wing with two degrees of freedom in an incompressible potential flow are presented in the time domain. The harmonic balance method is modified to calculate the LCO frequency and amplitude for rectangular wings. In order to verify the derived formulation, flutter boundaries are obtained via a linear analysis of the derived system of equations for five different cases and compared with experimental data. Satisfactory results are gained through this comparison. The problem of finding the LCO frequency and amplitude is solved via applying the two methods discussed for two different cases with hardening cubic nonlinearities. The results from first-, third- and fifth-order harmonic balance methods are compared with the results of an exact numerical solution. A close agreement is obtained between these harmonic balance methods and the exact numerical solution of the governing aeroelastic equations. Finally, the nonlinear aeroelastic analysis of a rectangular cantilever wing with a softening nonlinearity is studied.  相似文献   

18.
Predictions based on a numerical simulation of a natural draft dry cooling tower (NDDCT) has been compared with those obtained theoretically and experimentally. Experiments are conducted in a lab-scale NDDCT and are validated with a three-dimensional numerical simulation of the flow in and around the heat exchangers, which is modelled as a porous medium. Both vertical and horizontal arrangements of the heat exchangers are examined. The experimental, numerical and theoretical approaches lead to very close prediction for the air velocity and temperature at the exit of the cooling tower. Results of this study are expected to be useful for future work on the development of air-cooled condensers for geothermal power plants in Australia.  相似文献   

19.
为探讨高温花岗岩经水冷却后的细观结构损伤及动态力学性能,对水冷却后高温花岗岩开展波速和核磁共振测试,分离式霍普金森压杆冲击试验,以及冲击破碎试样的扫描电镜观察,分析比较不同状态下花岗岩波速、孔隙度和动力学参数的变化规律。研究发现:随着温度升高,经水冷却处理后高温花岗岩波速非线性下降,大孔径孔隙度分量增大,且水冷却后试样的孔隙孔径尺寸和数量均大于自然冷却;水冷却后高温花岗岩动力学参数呈现出随着温度升高,峰值应力减小,峰值应变增大,弹性模量则先增大后减小的规律;由于水冷却使高温花岗岩表面温度急剧降低,产生额外的温度应力,花岗岩内部损伤加剧,表现出更低的波速与峰值应力;而水的冷淬作用一定程度上提高了表层花岗岩的硬度,降低了高温后花岗岩的塑性能力,与自然冷却相比水冷却后花岗岩的峰值应变减小,弹性模量增大,表现出脆性破坏特征。在温度低于400 ℃时,冷却方式对冲击裂纹影响不大,随着温度升高到800 ℃,自然冷却后花岗岩冲击断面呈蜂窝状,而水冷却后冲击断面则相对平整。  相似文献   

20.
We present a numerical and theoretical investigation on the natural convection of a low Prandtl number fluid (Pr=0.025) in 2D and 3D side-heated enclosures tilted α=80° with respect to the vertical position. The choice of this inclination angle comes from a previous linear stability analysis of the basic (plane-parallel) flow that predicts the same critical Ra for longitudinal oscillatory and stationary transversal modes. In both the 2D and 3D enclosures the first transition gradually leads to a transversal stationary centered shear roll. In the 2D geometry the flow becomes time-dependent and multicellular (3 rolls) at the onset of a Hopf bifurcation, followed by subsequent period-doubling. On the other hand, in the 3D enclosure, the onset of oscillations is due to a fully three-dimensional standing wave composed of three counter-rotating longitudinal rolls. The further evolution of the 3D flow qualitatively agrees with previous experiments (J. Crystal Growth, 102 (1990) pp. 54–68): a quasiperiodic flow followed by a frequency locked state. The main contribution of this work is the analysis of the flow structure underlying the secondary frequency: a transversal wave composed of two shear rolls that coexist with the three longitudinal cells. This is the first numerical work that explicitly illustrates this scenario which was suggested at the onset of the biperiodic regime in many of the previous experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号