首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, a numerical simulation of copper microchannel heatsink (MCHS) using nanofluids as coolants is presented. The nanofluid is a mixture of pure water and nanoscale metallic or nonmetallic particles with various volume fractions. Also, the effects of various volume fractions, volumetric flow rate and various materials of nanoparticles on the performance of MCHS have been developed. A three-dimensional computational fluid dynamics model was developed using the commercial software package FLUENT, to investigate the conjugate fluid flow and heat transfer phenomena in micro channel heatsinks. The results show that the cooling performance of a microchannel heat sink with water based nanofluid containing Al2O3 (vol 8%) is enhanced by about 4.5% compared with micro channel heatsink with pure water. Nanofluids reduce both the thermal resistance and the temperature difference between the top (heated) surface of the MCHS and inlet nanofluid compared with that pure water. The cooling performance of a micro channel heat sink with metal nanofluids improves compared with that of a micro channel heat sink with oxide metal nanofluids because the thermal conductivity of metal nanofluid is higher than oxide metal nanofluids. Micro channel heat sinks with nanofluids are expected to be good candidates as the next generation cooling devices for removing ultra high heat flux.  相似文献   

2.
In the present experimental investigation, the liquid cooling in the micro channel fin heat sink with and without thermoelectric for central processor unit (CPU) of personal computer. The micro channel heat sinks with two different channel height are fabricated from the aluminum with the length, the width and the base thickness of 28, 40, 2?mm respectively. The de-ionized water is used as coolant. Effects of channel height, coolant flow rate, and run condition of PC on the CPU temperature are considered. The liquid cooling in micro-rectangular fin heat sink with thermoelectric is compared with the other cooling techniques. The thermoelectric has a significant effect on the CPU cooling of PC. The experiments are performed at no load and full load conditions within 60?min after steady state, which the mass flow rate are 0.023, 0.017 and 0.01?kg/s. The results heat transfer rate increase with increasing coolant flow rate and higher channel. When comparing with the other cooling system, cooling system with thermoelectric gives the highest efficiency. However, thermoelectric has the high or low heat transfer rate from heat rejected and cooling capacity conditions.  相似文献   

3.
车削加工温度对工件的表面加工质量和刀具的使用寿命具有重要影响. 设计了一种开式热沉内冷刀具,计算了在实际加工工艺参数下刀具受到的切削力和前刀面上的热流密度,分析了刀具的结构强度;建立了刀具热-流-固耦合温度场模型,探讨了热稳态条件下刀具的温度场分布,以及刀片冷却液流道内热沉数量对刀具导热性能的影响规律,比较了在相同热源条件下开式热沉内冷刀具与其他内冷刀具的导热性能. 结果表明:对于刀片材料为硬质合金YT5的刀具,在热流密度为10 W/mm2的条件下,内置6个热沉的设计方案可获得最佳冷却效果,刀具的最高切削温度控制为187.1 ℃;与其他内冷刀具相比,开式热沉内冷刀具的最高切削温度降低了12.1 ℃.   相似文献   

4.
Microprocessor power dissipation is constantly increasing. An increase in microprocessor size has also resulted in higher heat fluxes. The growth of information technology has rapidly increased over the past few years, causing an increase in the demand for a microprocessor that has a very high computing ability. The previous generation of central processing units (CPU) had 1.17 billion transistors planted in it, which indicates that a significant amount of heat was generated. The total heat dissipation resulting from a high end CPU is approximately 110-140 W, which will increase if the CPU voltage and frequency increase. Conventional air-cooled cooling systems are no longer adequate to remove these heat fluxes. For a number of applications, direct air-cooling systems will have to be replaced or enhanced by other high performance compact cooling techniques. In this study, the application of nanofluids as the working fluid on a heat pipe liquid-block combined with thermoelectric cooling is investigated. The type and effect of volume concentrations of nanofluids, coolant temperature, and thermoelectricsystem as heat pumps of a PC on the CPU’s temperature are considered. The results obtained from this technique are compared to those from other conventional cooling techniques. The heat pipe liquid-block combined with the thermoelectric system has a significant effect on heat transfer from the CPU. The higher thermal performance heat pipe liquid-block and thermoelectric cooled system with nanofluids proved its potential as a working fluid.  相似文献   

5.
In this paper, we present the numerical method for explaining the cooling performance of a microchannel heat sink with carbon nanotubes (CNTs)-fluid suspensions. Here we will show that with increase of nanolayer thickness of multiwalled carbon nanotubes (MWCNTs) the microchannel heat sink temperature gradient will be decreased. By using a theoretical model for explaining the enhancement in the effective thermal conductivity of nanotubes (cylindrical shape particles) for use in nanotube-in-fluid suspension, we investigate the temperature contours and thermal resistance of a microchannel heat sink with MWCNTs (with ~25 nm diameter) dispersed in water.  相似文献   

6.
The paper considers the flow of a power-law fluid past a vertical stretching sheet. Effects of variable thermal conductivity and non-uniform heat source/sink on the heat transfer are addressed. The thermal conductivity is assumed to vary linearly with temperature. Similarity transformation is used to convert the governing partial differential equations into a set of coupled, non-linear ordinary differential equations. Two different types of boundary heating are considered, namely Prescribed power-law Surface Temperature (PST) and Prescribed power-law Heat Flux (PHF). Shooting method is used to obtain the numerical solution for the resulting boundary value problems. The effects of Chandrasekhar number, Grashof number, Prandtl number, non-uniform heat source/sink parameters, wall temperature parameter and variable thermal conductivity parameter on the dynamics are shown graphically in several plots. The skin friction and heat transfer coefficients are tabulated for a range of values of the parameters. Present study reveals that in a gravity affected flow buoyancy effect has a significant say in the control of flow and heat transfer.  相似文献   

7.
通过热流固耦合模拟分析得到了不同微通道结构热沉基底的温度场及微通道内速度场,研究了相同入流功率下不同单层微通道拓扑结构对中心有高热流密度热点芯片的散热能力。结果表明:相同入流功率(0.05W)下,不同结构的散热能力排序由高到低为Y分形、弯曲散射、直散射(双侧出流)、直螺旋、直散射(单侧出流)、圆螺旋、树状分形、直槽结构;采用中心入流可有效降低芯片中心热点附近的温度,对于中心入流的散射结构,采用对称出流结构可提升其流动传热性能;Y分形结构具有良好的流动传热特性,对于热源面和中心热点均具有良好的散热效果。  相似文献   

8.
 A numerical investigation of electronic cooling enhancement is carried out in this study in order to determine how the operating temperature can be maintained under the allowable level. A new technique based on use of porous or foam material inserted between the components on a horizontal board is studied. One energy equation model has been adopted to analyse the thermal field. The control volume method based on finite differences with appropriate averaging for diffusion coefficients is used to solve the coupling between solid, fluid and porous regions. The effect of parameters such as Reynolds number, Darcy number and thermal conductivity ratio are considered in order to look for the most appropriate properties of the foam or porous substrate that allow optimal cooling. The results show that for high thermal conductivity of the porous substrate, substantial enhancement is obtained compared to the fluid case even if the permeability is low. In the mixed convection case, the insertion of the foam between the blocks leads to a temperature reduction of 50%. Received on 14 December 1999  相似文献   

9.
This paper presents the numerical investigation of the microtube heat sink with impingement jet feeding. The inlet channel covers only the quarter of the tube perimeter so the swirl flow is settled in the tubes and the heat transfer between the liquid flow and silicon substrate is improved. The water with the variable physical properties is used as the working fluid and laminar flow regime is considered. The proposed microtube heat sink with impingement jet feeding is compared with classic microtube heat sink in terms of temperature variation along the heated surface and temperature difference. The influence of the temperature dependent physical properties on the fluid flow and heat transfer is analyzed.  相似文献   

10.
Yi Lv  Sheng Liu 《Meccanica》2018,53(15):3693-3708
Junction temperature in the electronic packaging process is one of the critical factors affecting the service life of electronic devices. A micro-channel heat sink is a common heat dissipating device used to reduce the thermal resistance between components and substrate. In order to maximize the heat dissipation while minimizing the pressure drop, this paper adopts a topology optimization method. A material interpolation method based on variable density principle is used together with a moving asymptote algorithm for the optimization. The physics is governed by the heat and mass transfer, coupled with the momentum conservation in the fluid. Four parameters are varied in order to investigate their influence on the optimization process. A three-dimensional geometry has been constructed to study the flow field and the results are compared to a reference case to verify the temperature uniformity and thermal performance of the model. It is demonstrated that the optimized design of the micro-channel heat sink is reliable and effective.  相似文献   

11.
李琪  王兆宇  胡鹏飞 《力学学报》2022,54(11):2994-3009
基于Brinkman-extended Darcy模型和局部热平衡模型, 对多层平行裂隙型多孔介质通道内的流动传热特性进行研究. 获得了多层平行裂隙型多孔介质通道内各区域的速度场、温度场、摩擦系数及努塞尔数解析解, 并分析了裂隙层数、达西数、空心率、有效热导率之比等对通道内流动传热特性的影响. 结果表明: 达西数较小时, 通道多孔介质层内会出现不随高度变化的达西速度, 此达西速度会随裂隙层数的增加而增大, 但却不受各裂隙层下多孔介质层位置变化的影响. 增加裂隙层数会减弱空心率对压降的影响, 会使通道内流体压降升高, 但升高程度会逐渐降低. 增大热导率之比或减小空心率会使多裂隙通道内出现阶梯式温度分布, 而在较小热导率之比或较大空心率时多裂隙情况下的温度分布曲线会趋于一致. 此外, 当热导率之比较小时, 多层裂隙通道内的传热效果在任何空心率下都要优于单裂隙情况, 当热导率之比较大时, 存在临界空心率使各裂隙层数通道内的传热效果相同, 且多裂隙通道内继续增加裂隙层数对传热强度影响不大.   相似文献   

12.
The present investigation is devoted to the study of fully developed mixed convective flow through a vertical porous channel. The lateral variations of porosity and thermal diffusivity in the bed near the wall, are approximated by exponential functions. The correlation between permeability and porosity is brought through Kozney-Carman approximation. The volume averaged one dimensional low speed momentum equation proposed by Vafai is employed for the analysis of the problem. Results are obtained for steady heating of ascending cold fluid and steady cooling of ascending hot fluid. For the above physical situations it is observed that the heat transfer rate, and ratio of friction factor increases with increase in porous parameter, whereas the ratio of mass flow rate decreases with increase in porous parameter. The velocity profiles exhibit hydrodynamic channelling and peak velocity shifts towards the wall for higher values of the porous parameter. For steady heating of ascending could fluid increase in Rayleigh number enhances the heat transfer rate, and mass flow rate, while it reduces the ratio of friction factor. An opposite trend is observed for the case of steady cooling of ascending hot fluid.  相似文献   

13.
Important results of a numerical study performed on combined conduction–mixed convection–surface radiation from a vertical channel equipped with three identical flush-mounted discrete heat sources in its left wall are provided here. The channel has walls of identical height with the spacing varied by varying its aspect ratio (AR). The cooling medium is air that is considered to be radiatively transparent. The heat generated in the channel gets conducted along its walls before getting dissipated by mixed convection and radiation. The governing equations for fluid flow and heat transfer are considered without boundary layer approximations and are transformed into vorticity–stream function form and are later normalized. The resulting equations are solved, along with relevant boundary conditions, making use of the finite volume method. The computer code written for the purpose is validated both for fluid flow and heat transfer results with those available in the literature. Detailed parametric studies have been performed and the effects of modified Richardson number, surface emissivity, thermal conductivity and AR on various pertinent results have been looked into. The significance of radiation in various regimes of mixed convection has been elucidated. The relative contributions of mixed convection and radiation in carrying the mandated cooling load have been thoroughly explored.  相似文献   

14.
The problem of unsteady oscillatory flow and heat transfer of two viscous immiscible fluids through a horizontal channel with isothermal permeable walls has been considered. The partial differential equations governing the flow and heat transfer are solved analytically using two-term harmonic and non-harmonic functions in both fluid regions of the channel. Effects of physical parameters such as viscosity ratio, conductivity ratio, Prandtl number and frequency parameter on the velocity and temperature fields are shown graphically. It is observed that the velocity and temperature decrease as the viscosity ratio increases, while they increase with increases in frequency parameter. The effect of increasing the thermal conductivity ratio also suppresses the temperature in both fluid regions. The effect of periodic frequency on the flow is depicted in tabular form. It is predicted that both the velocity and temperature profiles decrease as the periodic frequency increases.  相似文献   

15.
《力学快报》2023,13(3):100432
Extensive improvements in small-scale thermal systems in electronic circuits, automotive industries, and microcomputers conduct the study of microsystems as essential. Flow and thermic field characteristics of the coherent nanofluid-guided microchannel heat sink are described in this perusal. The porous media approximate was used to search the heat distribution in the expanded sheet and Cu: γ - AlOOH/water. A hybrid blend of Boehme copper and aluminum nanoparticles is evaluated to have a cooling effect on the microchannel heat sink. By using Akbari Ganji and finite element methods, linear and non-linear differential equations as well as simple dimensionless equations have been analyzed. The purpose of this study is to investigate the fluid and thermal parameters of copper hybrid solution added to water, such as Nusselt number and Darcy number so that we can reach the best cooling of the fluid. Also, by installing a piece of fin on the wall of the heat sink, the coefficient of conductive heat transfer and displacement heat transfer with the surrounding air fluid increases, and the efficiency of the system increases. The overall results show that expanding values on the NP (series heat transfer fluid system maximizes performance with temperatures) volume division of copper, as well as boehmite alumina particles, lead to a decrease within the stream velocity of the Cu: AlOOH/water. Increasing the volume fraction of nanoparticles in the hybrid mixture decreases the temperature of the solid surface and the hybrid nanofluid. The Brownian movement improves as the volume percentage of nanoparticles in the hybrid mixture grows, spreading the heat across the environment. As a result, heat transmission rates rise. As the Darcy number increases, the thermal field for solid sections and Cu: AlOOH/water improves.  相似文献   

16.
In the present paper, the boundary layer flow of viscous incompressible fluid over a stretching plate has been considered to solve heat flow problem with variable thermal conductivity. First, using similarity transformation, the components of velocity have been obtained. Then, the heat flow problem has been considered in two ways: (i) prescribed surface temperature (PST), and (ii) prescribed stretching plate heat flux (PHF) in case of variable thermal conductivity. Due to variable thermal conductivity, temperature profile has its two part—one mean temperature and other temperature profile induced due to variable thermal conductivity. The related results have been discussed with the help of graphs.  相似文献   

17.
This article presents a numerical approach to investigate the transpiration cooling problems with coolant phase change within porous matrix. A new model is based on the coupling of the two-phase mixture model (TPMM) with the local thermal non- equilibrium (LTNE), and used to describe the liquid coolant phase change and heat exchange processes in this article. The effects of thermal conductivity, porosity, and sphere diameter of the porous matrix on the temperature and saturation distributions within the matrix are studied. The results indicate that an increase in the porosity or sphere diameter can lead to an area dilation of two-phase region and a rise of liquid temperature; whereas an increase in the thermal conductivity of the porous matrix results only in a rise of liquid temperature, but drops of solid temperature and temperature gradient on the hot surface. The influence of hot surface pressure on cooling effect is discussed by numerical simulations, and numerical results show that the effect of the transpiration cooling will be worse under higher pressure. The investigation also discovers an inverse phenomenon to the past investigations on the transpiration cooling without coolant phase change, namely in two-phase region, coolant temperature may be higher than solid temperature. This inversion can be captured only by the new LTNE–TPMM.  相似文献   

18.
The influence of partial slip, thermal radiation and temperature dependent fluid properties on the hydro-magnetic fluid flow and heat transfer over a flat plate with convective surface heat flux at the boundary and non-uniform heat source/sink is studied. The transverse magnetic field is assumed as a function of the distance from the origin. Also it is assumed that the fluid viscosity and the thermal conductivity vary as an inverse function and linear function of temperature respectively. Using the similarity transformation, the governing system of non-linear partial differential equations are transformed into similarity non-linear ordinary differential equations and are solved numerically using symbolic software MATHEMATICA 7.0. The numerical values obtained within the boundary layer for the dimensionless velocity, temperature, skin friction coefficient and the Nusselt number are presented through graphs and tables for several sets of values of the parameters. The effects of various physical parameters on the flow and heat transfer characteristics are discussed from the physical point of view.  相似文献   

19.
A theoretical study is performed on heat and fluid flow in partially porous medium filled parallel plate channel. A uniform symmetrical heat flux is imposed onto the boundaries of the channel partially filled with porous medium. The dimensional forms of the governing equations are solved numerically for different permeability and effective thermal conductivity ratios. Then, the governing equations are made dimensionless and solved analytically. The results of two approaches are compared and an excellent agreement is observed, indicating correctness of the both solutions. An overall Nusselt number is defined based on overall thermal conductivity and difference between the average temperature of walls and mean temperature to compare heat transfer in different channels with different porous layer thickness, Darcy number, and thermal conductivity ratio. Moreover, individual Nusselt numbers for upper and lower walls are also defined and obtained. The obtained results show that the maximum overall Nusselt number is achieved for thermal conductivity ratio of 1. At specific values of Darcy number and thermal conductivity ratio, individual Nusselt numbers approach to infinity since the value of wall temperatures approaches to mean temperature.  相似文献   

20.
Numerical simulations have been carried out to investigate the unsteady natural convection flow in a cavity subjected to a sidewall heat flux varying sinusoidally with time. With all walls non-slip and the upper and lower boundaries and the other sidewall adiabatic, the heating and cooling produces an alternating direction natural convection boundary layer that discharges hot fluid to the top and cold fluid to the bottom of the cavity, generating a time-varying thermal stratification in the cavity interior. Scaling analysis has been conducted for different flow regimes based on the forcing frequency, with the characteristic time scales being the forcing period and the boundary layer development time. The scaling relations are then verified using the simulations, with the results showing overall good agreement with the derived scaling relations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号