首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a non‐intrusive reduced order model for general, dynamic partial differential equations. Based upon proper orthogonal decomposition (POD) and Smolyak sparse grid collocation, the method first projects the unknowns with full space and time coordinates onto a reduced POD basis. Then we introduce a new least squares fitting procedure to approximate the dynamical transition of the POD coefficients between subsequent time steps, taking only a set of full model solution snapshots as the training data during the construction. Thus, neither the physical details nor further numerical simulations of the original PDE model are required by this methodology, and the level of non‐intrusiveness is improved compared with existing reduced order models. Furthermore, we take adaptive measures to address the instability issue arising from reduced order iterations of the POD coefficients. This model can be applied to a wide range of physical and engineering scenarios, and we test it on a couple of problems in fluid dynamics. It is demonstrated that this reduced order approach captures the dominant features of the high‐fidelity models with reasonable accuracy while the computation complexity is reduced by several orders of magnitude. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
It is well known that exact projection methods (EPM) on non‐staggered grids suffer for the presence of non‐solenoidal spurious modes. Hence, a formulation for simulating time‐dependent incompressible flows while allowing the discrete continuity equation to be satisfied up to machine‐accuracy, by using a Finite Volume‐based second‐order accurate projection method on non‐staggered and non‐uniform 3D grids, is illustrated. The procedure exploits the Helmholtz–Hodge decomposition theorem for deriving an additional velocity field that enforces the discrete continuity without altering the vorticity field. This is accomplished by first solving an elliptic equation on a compact stencil that is by performing a standard approximate projection method (APM). In such a way, three sets of divergence‐free normal‐to‐face velocities can be computed. Then, a second elliptic equation for a scalar field is derived by prescribing that its additional discrete gradient ensures the continuity constraint based on the adopted linear interpolation of the velocity. Characteristics of the double projection method (DPM) are illustrated in details and stability and accuracy of the method are addressed. The resulting numerical scheme is then applied to laminar buoyancy‐driven flows and is proved to be stable and efficient. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
A three‐dimensional numerical model is presented for the simulation of unsteady non‐hydrostatic shallow water flows on unstructured grids using the finite volume method. The free surface variations are modeled by a characteristics‐based scheme, which simulates sub‐critical and super‐critical flows. Three‐dimensional velocity components are considered in a collocated arrangement with a σ‐coordinate system. A special treatment of the pressure term is developed to avoid the water surface oscillations. Convective and diffusive terms are approximated explicitly, and an implicit discretization is used for the pressure term to ensure exact mass conservation. The unstructured grid in the horizontal direction and the σ coordinate in the vertical direction facilitate the use of the model in complicated geometries. Solution of the non‐hydrostatic equations enables the model to simulate short‐period waves and vertically circulating flows. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
This work describes a methodology to simulate free surface incompressible multiphase flows. This novel methodology allows the simulation of multiphase flows with an arbitrary number of phases, each of them having different densities and viscosities. Surface and interfacial tension effects are also included. The numerical technique is based on the GENSMAC front‐tracking method. The velocity field is computed using a finite‐difference discretization of a modification of the Navier–Stokes equations. These equations together with the continuity equation are solved for the two‐dimensional multiphase flows, with different densities and viscosities in the different phases. The governing equations are solved on a regular Eulerian grid, and a Lagrangian mesh is employed to track free surfaces and interfaces. The method is validated by comparing numerical with analytic results for a number of simple problems; it was also employed to simulate complex problems for which no analytic solutions are available. The method presented in this paper has been shown to be robust and computationally efficient. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
This paper makes the first attempt of extending implicit AUSM‐family schemes to multiphase flow simulations. Water faucet, air–water shock tube and oscillating manometer problems are used as benchmark tests with the generic four‐equation two‐fluid model. For solving the equations implicitly, Newton's method along with a sparse matrix solver (UMFPACK solver) is employed, and the numerical Jacobian matrix is calculated. Comparison between implicit and explicit AUSM‐family schemes is presented, indicating that similarly accurate results are obtained with both schemes. Furthermore, the water faucet problem is solved using both staggered and collocated grids. This investigation helps integrate high‐resolution schemes into staggered‐grid‐based computational algorithms. The influence of the interface pressure correction on the simulation results is also examined. Results show that the interfacial pressure correction introduces numerical dissipation. However, this dissipation cannot eliminate the overshoots because of the incompatibility of numerical discretization of the conservative and non‐conservative terms in the governing equations. The comparison of CPU time between implicit and explicit schemes is also studied, indicating that the implicit scheme is capable of improving the computational efficiency over its explicit counterpart. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
This paper describes a non‐iterative operator‐splitting algorithm for computing all‐speed flows in complex geometries. A pressure‐based algorithm is adopted as the base, in which pressure, instead of density, is a primary variable, thus allowing for a unified formulation for all Mach numbers. The focus is on adapting the method for (a) flows at all speeds, and (b) multiblock, non‐orthogonal, body‐fitted grids for very complex geometries. Key features of the formulation include special treatment of mass fluxes at control volume interfaces to avoid pressure–velocity decoupling for incompressible (low Mach number limit) flows and to provide robust pressure–velocity–density coupling for compressible (high‐speed) flows. The method is shown to be robust for all Mach number regimes for both steady and unsteady flows; it is found to be stable for CFL numbers of order ten, allowing large time steps to be taken for steady flows. Enhancements to the method which allow for stable solutions to be obtained on non‐orthogonal grids are also discussed. The method is found to be very reliable even in complex engineering applications such as unsteady rotor–stator interactions in turbulent, all‐speed turbomachinery flows. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
This paper reports on the implementation and testing, within a full non‐linear multi‐grid environment, of a new pressure‐based algorithm for the prediction of multi‐fluid flow at all speeds. The algorithm is part of the mass conservation‐based algorithms (MCBA) group in which the pressure correction equation is derived from overall mass conservation. The performance of the new method is assessed by solving a series of two‐dimensional two‐fluid flow test problems varying from turbulent low Mach number to supersonic flows, and from very low to high fluid density ratios. Solutions are generated for several grid sizes using the single grid (SG), the prolongation grid (PG), and the full non‐linear multi‐grid (FMG) methods. The main outcomes of this study are: (i) a clear demonstration of the ability of the FMG method to tackle the added non‐linearity of multi‐fluid flows, which is manifested through the performance jump observed when using the non‐linear multi‐grid approach as compared to the SG and PG methods; (ii) the extension of the FMG method to predict turbulent multi‐fluid flows at all speeds. The convergence history plots and CPU‐times presented indicate that the FMG method is far more efficient than the PG method and accelerates the convergence rate over the SG method, for the problems solved and the grids used, by a factor reaching a value as high as 15. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
Second‐order accurate projection methods for simulating time‐dependent incompressible flows on cell‐centred grids substantially belong to the class either of exact or approximate projections. In the exact method, the continuity constraint can be satisfied to machine‐accuracy but the divergence and Laplacian operators show a four‐dimension nullspace therefore spurious oscillating solutions can be introduced. In the approximate method, the continuity constraint is relaxed, the continuity equation being satisfied up to the magnitude of the local truncation error, but the compact Laplacian operator has only the constant mode. An original formulation for allowing the discrete continuity equation to be satisfied to machine‐accuracy, while using a finite volume based projection method, is illustrated. The procedure exploits the Helmholtz–Hodge decomposition theorem for deriving an additional velocity field that enforces the discrete continuity without altering the vorticity field. This is accomplished by solving a second elliptic field for a scalar field obtained by prescribing that its additional discrete gradients ensure discrete continuity based on the previously adopted linear interpolation of the velocity. The resulting numerical scheme is applied to several flow problems and is proved to be accurate, stable and efficient. This paper has to be considered as the companion of: 'F. M. Denaro, A 3D second‐order accurate projection‐based finite volume code on non‐staggered, non‐uniform structured grids with continuity preserving properties: application to buoyancy‐driven flows. IJNMF 2006; 52 (4):393–432. Now, we illustrate the details and the rigorous theoretical framework. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
Numerical modeling of flow through vuggy porous media, mainly vuggy carbonates, is a challenging endeavor. Firstly, because the presence of vugs can significantly alter the effective porosity and permeability of the medium. Secondly, because of the co‐existence of porous and free flow regions within the medium and the uncertainties in defining the exact boundary between them. Traditionally, such heterogeneous systems are modeled by the coupled Darcy–Stokes equations. However, numerical modeling of flow through vuggy porous media using coupled Darcy–Stokes equations poses several numerical challenges particularly with respect to specification of correct interface condition between the porous and free‐flow regions. Hence, an alternative method, a more unified approach for modeling flows through vuggy porous media, the Stokes–Brinkman model, is proposed here. It is a single equation model with variable coefficients, which can be used for both porous and free‐flow regions. This also makes the requirement for interface condition redundant. Thus, there is an obvious benefit of using the Stokes–Brinkman equation, which can be reduced to Stokes or Darcy equation by the appropriate choice of parameters. At the same time, the Stokes–Brinkman equation provides a smooth transition between porous and free‐flow region, thereby taking care of the associated uncertainties. A numerical treatment for upscaling Stokes–Brinkman model is presented as an approach to use Stokes–Brinkman model for multi‐phase flow. Numerical upscaling methodology is validated by analyzing the error norm for numerical pressure convergence. Stokes–Brinkman single equation model is tested on a series of realistic data sets, and the results are compared with traditional coupled Darcy–Stokes model. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Time‐dependent incompressible Navier–Stokes equations are formulated in generalized non‐inertial co‐ordinate system and numerically solved by using a modified second‐order Godunov‐projection method on a system of overlapped body‐fitted structured grids. The projection method uses a second‐order fractional step scheme in which the momentum equation is solved to obtain the intermediate velocity field which is then projected on to the space of divergence‐free vector fields. The second‐order Godunov method is applied for numerically approximating the non‐linear convection terms in order to provide a robust discretization for simulating flows at high Reynolds number. In order to obtain the pressure field, the pressure Poisson equation is solved. Overlapping grids are used to discretize the flow domain so that the moving‐boundary problem can be solved economically. Numerical results are then presented to demonstrate the performance of this projection method for a variety of unsteady two‐ and three‐dimensional flow problems formulated in the non‐inertial co‐ordinate systems. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
This article presents a new nonlinear finite‐volume scheme for the nonisothermal two‐phase two‐component flow equations in porous media. The face fluxes are approximated by a nonlinear two‐point flux approximation, where transmissibilities nonlinearly depend on primary variables. Thereby, we mainly follow the ideas proposed by Le Potier combined with a harmonic averaging point interpolation strategy for the approximation of arbitrary heterogeneous permeability fields on polygonal grids. The behavior of this interpolation strategy is analyzed, and its limitation for highly anisotropic permeability tensors is demonstrated. Moreover, the condition numbers of occurring matrices are compared with linear finite‐volume schemes. Additionally, the convergence behavior of iterative solvers is investigated. Finally, it is shown that the nonlinear scheme is more efficient than its linear counterpart. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
This paper describes a finite‐volume volume‐of‐fluid (VOF) method for simulating viscous free surface flows on dynamically adaptive quadtree grids. The scheme is computationally efficient in that it provides relatively fine grid resolution at the gas–liquid interface and coarse grid density in regions where flow variable gradients are small. Special interpolations are used to ensure volume flux conservation where differently sized neighbour cells occur. The numerical model is validated for advection of dyed fluid in unidirectional and rotating flows, and for two‐dimensional viscous sloshing in a rectangular tank. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
The classical constitutive relations for multiphase flows in porous media assume instantaneous and local phase-equilibrium. Several alternative nonequilibrium/dynamic constitutive relations have been proposed in the literature including the works of Barenblatt, and Hassanizadeh and Gray. This work applies a Bayesian model selection framework in order to examine the relative efficacy of these three models to represent experimental observations. Experimental observations of multiphase displacement processes in natural porous media are often sparse and indirect, leading to considerable uncertainty in control conditions. Data from three core-scale drainage experiments are considered. Gaussian prior probability models are assumed for key multiphase flow parameters and measurements. Accurate numerical simulation approximations using the three constitutive relation models are implemented. The model selection analysis comprises a data-assimilation stage that calibrates the assumed model to the data while quantifying uncertainty. The second stage is the computation of the maximum likelihood estimate and its application to compute the Bayesian Information Criterion. It is observed that Barenblatt’s nonequilibrium model is more likely to match data from unstable displacements that involve higher viscosity ratios of the invading phase to the resident fluid. At the lowest viscosity ratio, there is no delineation between the goodness of fit obtained using the classical model and the model proposed by Hassanizadeh and Gray, and both outperform Barenblatt’s nonequilibrium model.  相似文献   

14.
We present a new non‐intrusive model reduction method for the Navier–Stokes equations. The method replaces the traditional approach of projecting the equations onto the reduced space with a radial basis function (RBF) multi‐dimensional interpolation. The main point of this method is to construct a number of multi‐dimensional interpolation functions using the RBF scatter multi‐dimensional interpolation method. The interpolation functions are used to calculate POD coefficients at each time step from POD coefficients at earlier time steps. The advantage of this method is that it does not require modifications to the source code (which would otherwise be very cumbersome), as it is independent of the governing equations of the system. Another advantage of this method is that it avoids the stability problem of POD/Galerkin. The novelty of this work lies in the application of RBF interpolation and POD to construct the reduced‐order model for the Navier–Stokes equations. Another novelty is the verification and validation of numerical examples (a lock exchange problem and a flow past a cylinder problem) using unstructured adaptive finite element ocean model. The results obtained show that CPU times are reduced by several orders of magnitude whilst the accuracy is maintained in comparison with the corresponding high‐fidelity models. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
We present a simple and cost‐effective curvature calculation approach for simulations of interfacial flows on structured and unstructured grids. The interface is defined using volume fractions, and the interface curvature is obtained as a function of the gradients of volume fractions. The gradient computation is based on a recently proposed gradient recovery method that mimicks the least squares approach without the need to solve a system of equations and is quite easy to implement on arbitrary polygonal meshes. The resulting interface curvature is used in a continuum surface force formulation within the framework of a well‐balanced finite‐volume algorithm to simulate multiphase flows dominated by surface tension. We show that the proposed curvature calculation is at least as accurate as some of the existing approaches on unstructured meshes while being straightforward to implement on any mesh topology. Numerical investigations also show that spurious currents in stationary problems that are dependent on the curvature calculation methodology are also acceptably low using the proposed approach. Studies on capillary waves and rising bubbles in viscous flows lend credence to the ability of the proposed method as an inexpensive, robust, and reasonably accurate approach for curvature calculation and numerical simulation of multiphase flows.  相似文献   

16.
There are two main difficulties in numerical simulation calculations using FD/FV method for the flows in real rivers. Firstly, the boundaries are very complex and secondly, the generated grid is usually very non‐uniform locally. Some numerical models in this field solve the first difficulty by the use of physical curvilinear orthogonal co‐ordinates. However, it is very difficult to generate an orthogonal grid for real rivers and the orthogonal restriction often forces the grid to be over concentrated where high resolution is not required. Recently, more and more models solve the first difficulty by the use of generalized curvilinear co‐ordinates (ξ,η). The governing equations are expressed in a covariant or contra‐variant form in terms of generalized curvilinearco‐ordinates (ξ,η). However, some studies in real rivers indicate that this kind of method has some undesirable mesh sensitivities. Sharp differences in adjacent mesh size may easily lead to a calculation stability problem oreven a false simulation result. Both approaches used presently have their own disadvantages in solving the two difficulties that exist in real rivers. In this paper, the authors present a method for two‐dimensional shallow water flow calculations to solve both of the main difficulties, by formulating the governing equations in a physical form in terms of physical curvilinear non‐orthogonal co‐ordinates (s,n). Derivation of the governing equations is explained, and two numerical examples are employed to demonstrate that the presented method is applicable to non‐orthogonal and significantly non‐uniform grids. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
There have been a few recent numerical implementations of the stress‐jump condition at the interface of conjugate flows, which couple the governing equations for flows in the porous and homogenous fluid domains. These previous demonstration cases were for two‐dimensional, planar flows with simple geometries, for example, flow over a porous layer or flow through a porous plug. The present study implements the interfacial stress‐jump condition for a non‐planar flow with three velocity components, which is more realistic in terms of practical flow applications. The steady, laminar, Newtonian flow in a stirred micro‐bioreactor with a porous scaffold inside was investigated. It is shown how to implement the interfacial jump condition on the radial, axial, and swirling velocity components. To avoid a full three‐dimensional simulation, the flow is assumed to be independent of the azimuthal direction, which makes it an axisymmetric flow with a swirling velocity. The present interface treatment is suitable for non‐flat surfaces, which is achieved by applying the finite volume method based on body‐fitted and multi‐block grids. The numerical simulations show that a vortex breakdown bubble, attached to the free surface, occurs above a certain Reynolds number. The presence of the porous scaffold delays the onset of vortex breakdown and confines it to a region above the scaffold. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
A novel numerical procedure for heat, mass and momentum transfer in fluid flow is presented. The new scheme is passed on a non‐upwind, interconnected, multi‐grid, overlapping (NIMO) finite‐difference algorithm. In 2D flows, the NIMO algorithm solves finite‐difference equations for each dependent variable on four overlapping grids. The finite‐difference equations are formulated using the control‐volume approach, such that no interpolations are needed for computing the convective fluxes. For a particular dependent variable, four fields of values are produced. The NIMO numerical procedure is tested against the exact solution of two test problems. The first test problem is an oblique laminar 2D flow with a double step abrupt change in a passive scalar variable for infinite Peclet number. The second test problem is a rotating radial flow in an annular sector with a single step abrupt change in a passive scalar variable for infinite Peclet number. The NIMO scheme produced essentially the exact solution using different uniform and non‐uniform square and rectangular grids for 45 and 30° angle of inclination. All other schemes were unable to capture the exact solution, especially for the rectangular and non‐uniform grids. The NIMO scheme was also successful in predicting the exact solution for the rotating radial flow, using a uniform cylindrical‐polar coordinate grid. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
Several problems on three‐dimensional instability of axisymmetric steady flows driven by convection or rotation or both are studied by a second‐order finite volume method combined with the Fourier decomposition in the periodic azimuthal direction. The study is focused on the convergence of the critical parameters with mesh refinement. The calculations are done on the uniform and stretched grids with variation of the stretching. Converged results are reported for all the problems considered and are compared with the previously published data. Some of the calculated critical parameters are reported for the first time. The convergence studies show that the three‐dimensional instability of axisymmetric flows can be computed with a good accuracy only on fine enough grids having about 100 nodes in the shortest spatial direction. It is argued that a combination of fine uniform grids with the Richardson extrapolation can be a good replacement for a grid stretching. It is shown once more that the sparseness of the Jacobian matrices produced by the finite volume method allows one to enhance performance of the Newton and Arnoldi iteration procedures by combining them with a direct sparse linear solver instead of using the Krylov‐subspace‐based iteration methods. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Pressure‐based methods such as the SIMPLE algorithm are frequently used to determine a coupled solution between the component momentum equations and the continuity equation. This paper presents a colocated variable pressure correction algorithm for control volumes of polyhedral/polygonal cell topologies. The correction method is presented independent of spatial approximation. The presence of non‐isotropic momentum source terms is included in the proposed algorithm to ensure its applicability to multi‐physics applications such as gas and particulate flows. Two classic validation test cases are included along with a newly proposed test case specific to multiphase flows. The classic validation test cases demonstrate the application of the proposed algorithm on truly arbitrary polygonal/polyhedral cell meshes. A comparison between the current algorithm and commercially available software is made to demonstrate that the proposed algorithm is competitively efficient. The newly proposed test case demonstrates the benefits of the current algorithm when applied to a multiphase flow situation. The numerical results from this case show that the proposed algorithm is more robust than other methods previously proposed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号