首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper is devoted to study a problem of reflection and refraction of quasi-longitudinal waves under initial stresses at an interface of two anisotropic piezoelectric media with different properties. One of the two media is aluminum nitride, which is considered the down piezoelectric medium and the above medium is chosen as PZT-5H ceramics. The two piezoelectric media welded are assumed to be anisotropic of a type of a transversely isotropic crystals (hexagonal crystal structure, class 6 mm). The equations of motion and constitutive relations for the piezoelectric media have been written. Suitable boundary conditions are used to obtain the reflection and refraction coefficients. For an incidence of quasi-longitudinal plane waves, four independent-type amplitude ratios of elastic displacement components for plane waves, called quasi-longitudinal (qP) and quasi-shear vertical (qSV) waves, are shown to exist. Also, it is observed that there exist four dependent amplitude ratios of electric potential, which are proportional to the previous four types. Finally, it is found that the coefficients of reflection and refraction are functions of angle of incidence, elastic constants, piezoelectric potential parameters and the initial stresses. Numerical computations and the results obtained are depicted graphically. In the end, a particular case has been reduced from the present study. This investigation is considered important because the initial stresses in such practical problems are inevitable and may result in frequency shift, a change in the velocity of surface waves and controlling the selectivity of a filter compensation of the devices.  相似文献   

2.
The propagation, reflection, and transmission of SH waves in slightly compressible, finitely deformed elastic media are considered in this paper. The dispersion relation for SH-wave propagation in slightly compressible, finitely deformed layer overlying a slightly compressible, finitely deformed half-space is derived. The present paper also deals with the reflection and refraction (transmission) phenomena due to the SH wave incident at the plane interface between two distinct slightly compressible, finitely deformed elastic media. The closed form expressions for the amplitude ratios of reflection and refraction coefficients of the reflected and refracted SH waves are obtained from suitable boundary conditions. For the numerical discussions, we consider the Neo-Hookean form of a strain energy function. The phase speed curves, the variations of reflection, and transmission coefficients with the angle of incidence, and the plots of the slowness sections are presented by means of graphs.  相似文献   

3.
The paper deals with the phenomena of reflection and refraction of plane elastic waves at a plane interface between two semi-infinite elastic solid media in contact, when both the media are initially stressed. It has been shown analytically that both reflected and refracted P and SV waves depend on initial stresses present in the media. The numerical values of reflection and refraction coefficients for different initial stresses and the angle of incidence have been calculated by computer and the results are given in the form of graphs. Many results are found in the paper which are not seen in initially stress-free media.  相似文献   

4.
The influence of the viscosity on reflection and refraction of plane shear elastic waves in two magnetized semi-infinite media is investigated. The numerical results for the absolute values of the reflection and refraction coefficients and their relative changes for a particular choice of the media are presented graphically. The relative changes of these coefficients are calculated for two special orientations of the magnetic field. It is found that the absolute values of these coefficients are not only functions of the angle of incidence but they are also functions of both the large primary magnetic field and the viscosity of the media. They also vary with the orientation of the magnetic field. Finally, we show that the results of earlier works could be obtained here as particular cases. Finally, this study is regarded an attempt to accommodate magnetic field in visco-elastic media where reflection and refraction of plane shear waves are considered. Results which are obtained in this investigation useful for practical applications or for understanding some aspects of physical acoustic.  相似文献   

5.
C. R. A. Rao 《Wave Motion》1979,1(4):259-270
A simple transformation in the independent variable makes it possible to obtain power series solutions of the stress equations of motion of elasticity for inhomogeneous elastic media whose refractive indices are represented by the Epstein profiles. Graphs of reflection and transmission coefficients versus angles of incidence are presented for different frequencies in the case of incident P as well as incident SV waves for some profiles.  相似文献   

6.
The propagation of plane harmonic waves through an interface between viscoelastic media is considered using the equations of field theory of defects, the kinematic identities for an elastic continuum with defects, and the dynamic equations of gauge theory. The reflection and refraction coefficients of elastic displacement waves and the waves of a defect field characterized by a dislocation density tensor and a defect flux tensor are determined. Dependences of the obtained quantities on the parameters of the interfacing media are analyzed.  相似文献   

7.
In this paper, the basic equations of motion, of Gauss and of heat conduction, together with constitutive relations for pyro- and piezoelectric media, are presented. Three thermoelastic theories are considered: classical dynamical coupled theory, the Lord–Shulman theory with one relaxation time and Green and Lindsay theory with two relaxation times. For incident elastic longitudinal, potential electric and thermal waves, referred to as qP, φ-mode and T-mode waves, which impinge upon the interface between two different transversal isotropic media, reflection and refraction coefficients are obtained by solving a set of linear algebraic equations. A case study is investigated: a system formed by two semi-infinite, hexagonal symmetric, pyroelectric–piezoelectric media, namely Cadmium Selenide (CdSe) and Barium Titanate (BaTiO3). Numerical results for the reflection and refraction coefficients are obtained, and their behavior versus the incidence angle is analyzed. The interaction with the interface give rises to different kinds of reflected and refracted waves: (i) two reflected elastic waves in the first medium, one longitudinal (qP-wave) and the other transversal (qSV-wave), and a similar situation for the refracted waves in the second medium; (ii) two reflected potential electric waves and a similar situation for the refracted waves; (iii) two reflected thermal waves and a similar situation for the refracted waves. The amplitudes of the reflected and refracted waves are functions of the incident angle, of the thermal relaxation times and of the media elastic, electric, thermal constants. This study is relevant to signal processing, sound systems, wireless communications, surface acoustic wave devices and military defense equipment.  相似文献   

8.
The reflection and refraction of a longitudinal wave at an interface between a perfectly conducting nonviscous liquid half-space and a perfectly conducting microstretch elastic solid half-space are studied. The appropriate solutions to the governing equations are obtained in both the half-spaces satisfying the required boundary conditions at the interface to obtain a system of five non-homogeneous equations in the amplitude ratios of various reflected and transmitted waves. The system is solved by a Fortran program of the Gauss elimination method for a particular example of an interface between water and aluminum-epoxy composite. Numerical values of the amplitude ratios are computed for a certain range of the incidence angle both in the presence and absence of an impressed transverse magnetic field. The effects of the presence of the transverse magnetic field on the amplitude ratios of various reflected and transmitted waves are shown graphically.  相似文献   

9.
The integral-equation method for calculating the reflection and transmission of elastic waves by the spatially periodic interface between two solids, developed in a previous paper, is applied to a sinusoidal interface, and numerical results are presented. The computations have been carried out for four different heights of the profile (the plane interface included), a single frequency of operation, two combinations of elastic solids, and the four types of excitation. We have considered the interface between granite and slate, the interface between copper and flint glass, and P- as well as SV-wave incidence in either of the media.A peaked behaviour of the reflection and transmission factor occurs at angles of incidence where an elastodynamic spectral mode changes from propagating to evanescent and vice versa. An additional anomaly occurs in cases where the horizontal wave number of one of the spectral orders coincides with the horizontal wave number of a Stoneley wave along the corresponding plane interface. The latter phenomenon is the more pronounced, the shallower the corrugation of the interface is.  相似文献   

10.
The problem of reflection and transmission due to longitudinal and transverse waves incident obliquely at a plane interface between uniform elastic solid half-space and fractional order thermoelastic solid half-space has been studied. It is found that the amplitude ratios of various reflected and refracted waves are functions of angle of incidence and frequency of incident wave and are influenced by the fractional order thermoelastic properties of media. The expressions of amplitude ratios and energy ratios have been computed numerically for a particular model. The variation of amplitude and energy ratios with angle of incidence is shown graphically. The conservation of energy at the interface is verified.  相似文献   

11.
A problem concerned with the reflection and refraction of thermoelastic plane waves at an imperfect interface between two generalized thermally conducting cubic crystal solid half-spaces of different elastic and thermal properties with two relaxation times has been investigated. The generalized thermoelastic theory with two relaxation times developed by Green and Lindsay has been used to study the problem. The expressions for the reflection and refraction coefficients which are the ratios of the amplitudes of reflected and refracted waves to the amplitude of incident waves are obtained for an imperfect boundary and deduced for normal stiffness, transverse stiffness, thermal contact conductance, slip and welded boundaries. Amplitude ratios of different reflected and refracted waves for different boundaries with angle of emergence have been compared graphically for different incident waves. It is observed that the amplitude ratios of reflected and refracted waves are affected by the stiffness and thermal properties of the media.  相似文献   

12.
The propagation of plane vertical transverse waves at an interface of a semi-infinite piezoelectric elastic medium under the influence of the initial stresses is discussed. The free surface of the piezoelectric elastic medium is considered to be adjacent to vacuum. We assumed that the piezoelectric material is anisotropic of the type of a transversely isotropic crystals (hexagonal crystal structure, class 6 mm). For an incident of vertical transverse plane wave, four types (two for the displacement and two for the electric potential) of reflected plane waves, called quasi-longitudinal (qP) and quasi-shear vertical (qSV) waves are shown to be exist. The relations governing the reflection coefficients of these reflected waves for various boundary conditions (mixed-free-fixed) are derived. It has been shown analytically that reflected coefficients of (qP) and (qSV) waves depend upon the angle of incidence, the parameters of electric potential, the material constants of the medium as well as the initial stresses presented in the medium. The numerical computations of reflection coefficients for different values of initial stresses have been carried out by computer for aluminum nitride (AlN) as an example and the results are given in the form of graphs. Finally, particular cases are considered in the absence of the initial stresses and the electric potential. Some of earlier studies have been compared to the special cases and shown good agreement with them.  相似文献   

13.
Wave propagation in a porous elastic medium saturated by two immiscible fluids is investigated. It is shown that there exist three dilatational waves and one transverse wave propagating with different velocities. It is found that the velocities of all the three longitudinal waves are influenced by the capillary pressure, while the velocity of transverse wave does not at all. The problem of reflection and refraction phenomena due to longitudinal and transverse wave incident obliquely at a plane interface between uniform elastic solid half-space and porous elastic half-space saturated by two immiscible fluids has been analyzed. The amplitude ratios of various reflected and refracted waves are found to be continuous functions of the angle of incidence. Expression of energy ratios of various reflected and refracted waves are derived in closed form. The amplitude ratios and energy ratios have been computed numerically for a particular model and the results obtained are depicted graphically. It is verified that during transmission there is no dissipation of energy at the interface. Some particular cases have also been reduced from the present formulation.  相似文献   

14.
The reflection and refraction of acoustic waves at different angles of incidence on the interface between a vapor-gas-droplet system and air are studied. From an analysis of analytical solutions, it has been found that in the case of incidence on the interface from the side of the vapor-gas-droplet medium, there is a critical angle of incidence at which the wave is completely reflected from the boundary, i.e., total internal reflection takes place. It is shown that for a certain angle of incidence on the interface both from the air side and from the mixture side and for a certain volume fraction of water in the disperse system, complete transmission of the acoustic wave through the medium is observed.  相似文献   

15.
The present study is concerned with the wave propagation in an electro-microelastic solid. The reflection phenomenon of plane elastic waves from a stress free plane boundary of an electro-microelastic solid half-space is studied. The condition and the range of frequency for the existence of elastic waves in an infinite electro-microelastic body are investigated. The constitutive relations and the field equations for an electro-microelastic solid are stemmed from the Eringen’s theory of microstretch elasticity with electromagnetic interactions. Amplitude ratios and energy ratios of various reflected waves are presented when an elastic wave is made incident obliquely at the stress free plane boundary of an electro-microelastic solid half-space. It has been verified that there is no dissipation of energy at the boundary surface during reflection. Numerical computations are performed for a specific model to calculate the phase speeds, amplitude ratios and energy ratios, and the results obtained are depicted graphically. The effect of elastic parameter corresponding to micro-stretch is noticed on reflection coefficients, in particular. Results of Parfitt and Eringen [Parfitt, V.R., Eringen, A.C., 1969. Reflection of plane waves from a flat boundary of a micropolar elastic half-space. J. Acoust. Soc. Am. 45, 1258–1272] have also been reduced as a special case from the present formulation.  相似文献   

16.
The specific feature of the interface, which maintains sliding contact between elastic media, is that it can be impervious to the wave field existing in one of the adjoined materials. As a result, reflection–transmission of plane acoustic waves at the sliding-contact interface may enjoy the cutting-off effect, which implies that neither bulk, nor inhomogeneous modes are being transmitted at particular angles of incidence. The necessary and sufficient criteria for this phenomenon are obtained for a binary structure, constituted by two elastic half-spaces in sliding contact, and for a sandwich structure with sliding-contact interfaces between the enclosed layer and the substrates. In the generic case of unrestricted anisotropy (triclinic materials), the criterion for cutting-off in a binary structure involves acoustic parameters of solely that of the half-spaces, which contains the incident mode, and proves to be independent of an adjacent medium. The frequency-dispersive criterion for the absence of transmission through a triclinic layer in the sliding-contact sandwich structure is independent of substrates. By appeal to the Stroh formalism, the cutting-off conditions in a binary and a sandwich structure are further elaborated under the assumption that one of the half-spaces, or a layer, is orthorhombic, and its two symmetry planes are parallel, respectively, to the plane of incidence and to the sliding-contact interface with arbitrary adjacent media. It is shown that the transmission cut-off in a binary structure is necessarily accompanied by the absence of mode conversion at reflection, but the reverse is not true. The angles of incidence which give rise to these effects are determined in terms of elastic coefficients. Transmission cut-off through an orthorhombic layer comes about at an arbitrary angle of incidence, related to guided-modes range in the layer, for the corresponding aperiodic infinite set of the frequency values. Relations for the coefficients of reflection and transmission at the sliding-contact interface between two orthorhombic half-spaces are obtained in concise form, expressed solely via normal components of the partial Stroh-normalized traction amplitudes. Provided that the adjoined orthorhombic half-spaces in sliding contact are identical, the same value of wave-vector tangential projection, which stipulates transmission cut-off at the incidence of, say, the fast mode, entails total transmission at the incidence of the slow mode.  相似文献   

17.
Summary In this paper, the reflection and refraction of a plane wave at an interface between two half-spaces composed of triclinic crystalline material is considered. It is shown that due to incidence of plane wave three types of waves, namely quasi-P (qP), quasi-SV (qSV) and quasi-SH (qSH), will be generated governed by the propagation condition involving the acoustic tensor. A simple procedure has been presented for the calculation of all the three phase velocities of the quasi waves. It has been established that the direction of particle motion is neither parallel nor perpendicular to the direction of propagation. Relations are established between directions of motion and propagation, respectively. The expressions for reflection and refraction coefficients of qP, qSV and qSH waves are obtained. Numerical results of reflection and refraction coefficients are presented for different types of anisotropic media and for different types of incident waves. Graphical representations have been made for incident qP waves, and for incident qSV and qSH waves numerical data are presented in tables.The work was completed while the author was visiting the University of Kaiserslautern, Department of Geomathematics as Visiting Professor. The Author is grateful to Professor Dr. W. Freeden for providing DAAD fellowship and all the facilities for conducting research, as well as to Dr. V.Michel for various discussions about the research work and also for all kinds of help during his stay at Kaiserslautern, Germany. This award is very gratefully acknowledged.  相似文献   

18.
A plane standing wave solution is obtained for homogeneous, isotropic, incompressible nonlinearly elastic solids. The motion describes the nonlinear interaction of two oppositely propagating, circularly polarized waves. It is used to obtain exact steady state solutions for nonlinear vibrations of a plate and for reflection and transmission of finite amplitude, circularly polarized waves at a plane interface.  相似文献   

19.
The problem of reflection and transmission of plane waves incident on the contact surface of an elastic solid and an electro-microstretch generalized thermoelastic solid is discussed. It is found that there exist five reflected waves, i.e., longitudinal displacement (LD) wave, thermal (T) wave, longitudinal microstretch (LM) wave and two coupled transverse displacement and microrotational (CD(I) and CD(II)) waves in the electro-microstretch generalized thermoelastic solid, and two transmitted waves, i.e., longitudinal (P) and transverse (SV) waves in the elastic solid. The amplitude ratios of different reflected and transmitted waves are obtained for an imperfect boundary and deduced for normal force stiffness, transverse force stiffness, and perfect bonding. The variations of amplitude ratios with incidence angles have been depicted graphically for the LD wave and the CD(I) wave. It is noticed that the amplitude ratios of reflected and transmitted waves are affected by the stiffness, electric field, stretch, and thermal properties of the media. Some particular interest cases have been deduced from the present investigations.  相似文献   

20.
S. S. Singh 《Meccanica》2013,48(3):617-630
The problem of reflection and refraction of elastic waves for an incident transverse wave at a plane interface between two dissimilar half-spaces of thermo-elastic materials with voids has been investigated. Using the theory developed by Iesan (Acta Mech 60:67–89, 1986), the formulae corresponding to the amplitude and energy ratios of reflected and refracted elastic waves have been obtained. The results similar to Singh and Tomar (Mech Materials 39:932–940, 2007) are recovered from the present analysis. The amplitude and energy ratios are computed numerically for a particular model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号