首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
潜射导弹出水载荷数值算法研究   总被引:4,自引:0,他引:4  
潜射导弹在水中航行时,表面被空泡包围,这就造成其出水时,带来较大的载荷冲击. 出水冲击载荷需要知道整个表面上的压力分布,但是这在工程实践中是不可能实现的. 本文采用有限元流固耦合仿真程序,对潜射导弹整个出水过程进行数值模拟. 根据数值计算结果,依据理论力学的基本原理,计算出潜射导弹所受到的冲击力与冲击力矩,利用NASTRAN 瞬态载荷解算器,计算出潜射导弹各截面最大响应弯矩. 结果表明,本文提出的方法能够对潜射导弹出水过程提供数值预测与安全评估.  相似文献   

2.
马宇  刘晓伟  张江  黄湛  马元宏 《实验力学》2014,29(4):467-473
在潜射导弹高速出水之前,弹体的肩部会出现明显的空化现象。为了研究潜射导弹在出水过程中肩部空化的发展演化过程及相应的弹体姿态角变化,以高速摄影为基本手段,采用边缘检测技术测算弹体姿态角以及肩部空化泡边界,通过对比分析不同出水阶段、不同时刻弹体肩部空化发展的状态,用来寻找出水过程中肩部空化现象和弹体姿态的发展规律。研究表明,高速出水条件下弹体在出水过程中有三种形式的空化现象先后出现,弹体肩部一开始形成的是片状空化,其轴向起始位置不同,周向也为随机分布;弹体运动过程中片状空化以两种方式转化为云状空化,一种是先脱落为旋涡型空化,然后再扩散为云状空化;另一种为片状空化尾部直接脱落为云状空化。出水过程中弹体姿态角变化幅度很小,而且在肩部空化泡出水溃灭的瞬间,弹体姿态角并未产生明显变化。  相似文献   

3.
导弹水下发射时,在横向载荷作用下的姿态变化是影响发射安全的重要因素。笔者围绕水下弹射引起的多相流动及支承结构变形载荷,以计算流体力学方法和嵌套动网格技术为基础,依据弹体六自由度运动引起的支承载荷变化,构建水下弹射与横向动力学耦合计算模型。该模型应用于模拟弹射和横向流作用下的导弹弹射过程,模拟结果表明:采用流动与刚体动力学耦合模型计算结果与实验测量结果在最大负压冲击下误差小于5%,能够有效描述水下弹射的水-气两相流动特征,可用于水下弹射与动力学模型的耦合分析。  相似文献   

4.
气泡弹性对同心筒水下发射影响研究   总被引:5,自引:0,他引:5  
潜射导弹自同心简装置发射过程中在筒口处会形成燃气泡,由于气泡在水下的弹性效应,水气耦合作用导致气泡周期性地膨胀压缩,会对导弹弹道参数、受载特性产生一定影响.以CFD为技术手段,建立了导弹水下发射动态仿真模型,通过数值模拟获得了发射过程中多相流场、导弹弹道参数及受力的时间历程曲线,分析了气体弹性效应对参数变化的影响;并针对发射深度及其发射艇速对气泡弹性效应的影响进行了仿真分析,给出了其影响规律.仿真方法和结果对工程研究有一定参考价值.  相似文献   

5.
导弹水下发射燃气泡计算   总被引:27,自引:1,他引:27  
采用一维非定常气流场模型和轴对称理想水流场模型,对水下发射导弹的尾部非定常燃气泡内外流场进行了耦合数值求解。考虑了高温燃气与水介质之间的传热、汽化等对泡内气体流动的影响,数值模拟了燃气泡的生长和脱落过程,揭示了燃气泡中气体流动的基本规律,计算了燃气泡发展对导弹所受水动力的影响。  相似文献   

6.
基于CFD的方形截面导弹纵向虚拟飞行模拟   总被引:2,自引:1,他引:1  
通过将飞行力学模型及操纵控制舵面的控制律同流体力学方程耦合求解,能够完成基于CFD方法的虚拟飞行模拟.通过这种方法实现了方形截面导弹的纵向虚拟飞行模拟.着重介绍了将飞行力学方程及舵偏控制律耦合到CFD解算器中的方法,以及用于复杂外形的需要随飞行器及舵偏一起运动的多块结构网格更新方法,研究成果未来可用于非线性条件下飞行器稳定性及控制律的检验.完成了方形截面导弹纵向虚拟飞行模拟,包括纵向俯仰自由度的迎角保持机动和通过舵面的偏转控制飞行器迎角按照预定的变化量减小;通过两种典型机动动作的模拟,证明发展的耦合计算方法以及所采用的配平算法可以成功地应用于虚拟飞行模拟中.  相似文献   

7.
针对路基同心筒自力发射整体热环境恶劣的问题,依托弹性变形和域动分层相结合的动网格技术,基于均质多相流理论并耦合液态水专用汽化求解程序,建立在发射筒底部注水的三维气液两相流体动力学模型;以火箭发动机自由射流注水实验为基础,验证汽化程序三维计算的可靠性与有效性;通过瞬态数值计算,讨论筒底注水角度对导弹、内外筒热环境和导弹载荷特性的影响规律。分析表明:发射筒内发生了显著的汽化反应;导弹及发射系统总体热环境得到了显著改善,实现了发射系统持续降温的目的;在筒底注水后,弹底的附加推力及火箭发动机的推力有一定增加,随着注水量的减少,注水对导弹载荷的影响越来越弱。  相似文献   

8.
紧耦合GPS/INS组合导航能力的分析   总被引:1,自引:0,他引:1  
将GPS的长期高精度与惯性导航(INS)的短期高精度结合,构成GPS/INS组合导航系统是目前大型舰船、潜艇、飞机、导弹等导航技术发展的方向。该文主要根据紧耦合GPS/INS组合导航的机理,分析其导航能力。  相似文献   

9.
在飞航导弹气动/隐身一体化设计中,运用产品设计领域中的公理设计理论描述设计过程,两大设计公理作为设计决策的理论依据,在由功能向设计参数映射的过程中发现设计耦合,并运用TRIZ理论对产生耦合的物理矛盾与技术矛盾进行消除.由此建立的分阶段设计流程有利于在设计方案的多学科优化中运用分级优化策略,降解复杂设计任务.  相似文献   

10.
不同发射深度下导弹水下点火气水流体动力计算   总被引:18,自引:1,他引:18  
从流体动力角度研究了不同发射深度下,导弹水下点火这一非定常非线性过程。整个系统分为外部水流场、喷管流场和燃气泡流场三个区域加以考虑。水流场采用不可压势流模型,用边界元方法求解;喷管内流场采用非定常一元流动模型,用特征线差分法求解,并设置了激波检测功能;燃气泡采用基于质量和能量守恒的零维计算模型。在时间域中用步进方法实现了三个流场的耦合求解。给出了四种发射深度下的数值计算结果,展示了导弹水下点火的一  相似文献   

11.
基于谱单元方法对水下爆炸流固耦合机理进行了研究,针对总场模型中入射波在流体网格中传播会产生失真现象的问题,采用场分离技术,通过理论推导建立了水下爆炸流固耦合问题的散射场数值模型.经过编程计算比较得出,散射场数值模型有效解决了入射波在流体网格中传播的失真问题,比总场模型计算精度更高,可较好地应用于水下爆炸流固耦合问题的求...  相似文献   

12.
近场水下爆炸瞬态强非线性流固耦合无网格数值模拟研究   总被引:2,自引:1,他引:1  
近场水下爆炸涉及多相流体的掺杂耦合以及结构的大变形、损伤和断裂等瞬态强非线性现象, 传统的网格算法在模拟近场水下爆炸时面临结构网格畸变、多相界面捕捉精度不足等难题, 鉴于此, 本文建立了完全无网格的近场水下爆炸冲击波和气泡全物理过程瞬态强非线性流固耦合动力学模型. 流体采用基于黎曼求解器的光滑粒子流体动力学(SPH)方法求解, 结构采用重构核粒子法(RKPM)求解, 并基于法向通量边界条件实现流固耦合. 为提高SPH对流场间断的求解精度, 引入黎曼问题思想并结合MUSCL重构算法, 为解决流场粒子体积变化剧烈导致的精度下降问题, 应用了自适应粒子分割与合并方法. 为模拟水下爆炸对结构造成的损伤断裂, 基于退化实体几何表述, 采用Lemaitre损伤算法, 建立了RKPM壳结构断裂损伤模型. 依据所建立的SPH-RKPM流固耦合模型, 对近场水下爆炸冲击波传播、气泡脉动与射流以及结构毁伤进行了模拟, 将得到的冲击波载荷、气泡演化以及结构响应与实验值和其他数值解对比, 验证了当前建立的SPH-RKPM流固耦合模型的有效性和精度, 并给出了水下爆炸载荷特性及其对结构的流固耦合毁伤机制与规律, 旨在为近场水下爆炸载荷预报提供理论和基础性技术支撑, 为毁伤威力评估和舰船防护结构设计提供参考.   相似文献   

13.
超空泡射弹通过超空泡减阻技术在水下高速长距离航行, 是对抗水下近距离威胁的有效手段. 为了扩大防御范围、增加杀伤力, 超空泡射弹具有很高的发射速度. 高速超空泡射弹在入水时中受到极大的冲击载荷, 发生显著的结构变形, 结构变形与流场之间存在相互影响和作用, 常规的基于刚体假设的仿真研究方法不再适用. 为了研究高速超空泡射弹入水过程中的结构变形及其对流体动力特性的影响, 通过耦合流体力学求解器和结构动力学求解器, 建立了射弹高速入水双向流固耦合仿真模型, 并通过与文献中的试验结果进行对比验证了该模型空泡形态计算方法和耦合方法的准确性. 使用双向流固耦合的方法对高速射弹在不同初始攻角入水过程中的超空泡流动特性及结构变形特性进行了数值模拟研究, 通过对比流固耦合模型与刚体模型的计算结果, 得到了超空泡射弹的结构弯曲变形对流体动力载荷的影响. 研究结果表明: 高速射弹入水过程中流固耦合效应对超空泡流型及流体动力载荷的计算结果有显著影响; 本文所研究的射弹在考虑流固耦合效应, 带攻角垂直入水两倍弹长的范围内, 超空泡射弹的流体动力载荷与弯曲变形之间形成正反馈; 高速超空泡射弹在入水过程中受到的流体动力载荷及弹体应力应变随入水初始攻角的增加显著增大, 研究对象在初速1400m/s的条件下入水时, 当初始攻角不超过2°时不存在结构安全性问题.   相似文献   

14.
《力学快报》2021,11(6):100311
The coupling effect between a pulsating bubble and a free surface near a rigid structure is a complicated physical process. In this study, the evolution of an underwater explosion bubble and the free surface near a rigid structure is modeled by the boundary integral method. An approach of “double-node method” is used to maintain the stability of fluid-structure junction in the simulations, and meshes on the free surface and the structure are transformed to an open domain to ensure the calculation accuracy and efficiency. Validations are conducted against an underwater explosion experiment near a rigid structure. As a result, the simulations trace the jetting behavior of the bubble and the rise of the free surface. Finally, the bubble migration and the height of the free surface for different structure draughts are analyzed.  相似文献   

15.
In the underwater-shock environment,cavitation occurs near the structural surface.The dynamic response of fluid-structure interactions is influenced seriously by the cavitation effects.It is also the difficulty in the field of underwater explosion.With the traditional boundary element method and the finite element method(FEM),it is difficult to solve the nonlinear problem with cavitation effects subjected to the underwater explosion.To solve this problem,under the consideration of the cavitation effects and fluid compressibility,with fluid viscidity being neglected,a 3D numerical model of transient nonlinear fluid-structure interaction subjected to the underwater explosion is built.The fluid spectral element method(SEM) and the FEM are adopted to solve this model.After comparison with the FEM,it is shown that the SEM is more precise than the FEM,and the SEM results are in good coincidence with benchmark results and experiment results.Based on this,combined with ABAQUS,the transient fluid-structure interaction mechanism of the 3D submerged spherical shell and ship stiffened plates subjected to the underwater explosion is discussed,and the cavitation region and its influence on the structural dynamic responses are presented.The paper aims at providing references for relevant research on transient fluid-structure interaction of ship structures subjected to the underwater explosion.  相似文献   

16.
基于ANSYS ACP的复合材料螺旋桨流固耦合计算方法   总被引:1,自引:0,他引:1  
黄政  熊鹰  杨光 《计算力学学报》2017,34(4):501-506
针对复合材料螺旋桨的流固耦合水弹性行为,为形成双向耦合的集成平台,对复合材料螺旋桨进行了流固耦合计算方法的研究。在ANSYS Workbench平台中,采用ACP模块对复合材料螺旋桨的建模进行了分析,介绍了复合材料螺旋桨的建模流程、流体计算模型和固体计算模型。通过静态加载试验对复合材料螺旋桨建模方法的可靠性进行了验证,计算值与试验值的偏差在5.1%以内,且反映出材料的各向异性。通过空泡水洞模型试验对复合材料螺旋桨流固耦合敞水性能计算方法的精确度进行了验证,在转速为12.7r/s和25r/s两个工况下计算的推力和扭矩与试验值吻合较好。验证了基于ANSYS ACP的复合材料螺旋桨稳态流固耦合计算方法合理可行,为复合材料螺旋桨的流固耦合振动特性分析提供了参考。  相似文献   

17.
冲击波和气泡作用下舰船结构动态响应的数值模拟   总被引:2,自引:0,他引:2  
针对水下爆炸载荷、瞬态流固耦合效应在舰船水下爆炸数值模拟中的困难,在现有水下爆炸载荷计算模型(Geers and Hunter)的基础上,结合边界元法,修正水下爆炸气泡载荷计算方法.针对用二阶双渐近法(the second-order doubly-asymptotic approximation,DAA2)在处理低频...  相似文献   

18.
本文以多片平行悬臂板为模型,对平行结构流固耦合振动特性问题从理论上进行了探讨,导出了便于分析计算的理论表达式,并进行了计算与实验验证。结果说明,分析方法正确,对于分析实际水工结构的完全流固耦合问题具有现实意义。  相似文献   

19.
航行体水下发射流固耦合效应分析   总被引:12,自引:12,他引:0  
对于水下发射过程来说,掌握水动力载荷形成机理与结构响应特征是一个亟待解决的问题.研究该问题需要考虑含相变的复杂多相流动,变约束的结构运动以及这二者之间的耦合效应.本文采用松耦合的方法,以流体求解器为主体,将自编的固体结构程序接入流体求解器中,在每个时间步长内分别对流体动力学方程和固体结构动力学方程进行求解,通过流固界面之间的数据交换实现耦合计算.其中,流体求解器基于雷诺平均纳维斯托克斯方程,采用单流体模型处理多相流问题,引入空化模型描述空化相变,采用修正的湍流模型模拟混合物的湍流效应,并采用动网格技术处理移动边界问题.航行体的刚体运动和结构振动分开求解.结构求解器采用等效梁模型描述结构的振动,通过坐标变换给出了随体坐标系下的结构振动方程,求解方法采用时域积分法.所建立的流固耦合方法不仅能够捕捉到自然空化的演化情况,还可获得航行体所受水动力、结构振动响应以及截面的弯矩,获得了实验的验证.基于该方法研究了结构刚度、发射速度对空泡溃灭与结构振动耦合效应的影响规律.结果表明,同步溃灭是影响结构载荷的主要因素,包括溃灭压力幅值,溃灭压力作用位置,以及溃灭压力与结构振动的相位关系.  相似文献   

20.
姚学昊  陈丁  武立伟  黄丹 《力学学报》2022,54(12):3333-3343
流固耦合破坏是一类涉及结构变形与破坏以及复杂自由表面现象的强非线性力学问题. 结合近场动力学(peridynamics, PD)与光滑粒子流体动力学(smoothed particle hydrodynamics, SPH)各自的优势并考虑其计算效率问题, 提出一种适用于分析流?固耦合破坏问题的多分辨率PD-SPH混合方法. 分别采用SPH和PD方法以不同的空间和时间分辨率对流体和结构进行离散与求解, 利用具有与流体粒子相同光滑长度的虚粒子处理流?固界面, 以高精度满足界面边界条件. 通过两个经典算例: 液柱静压力下弹性板的变形和溃坝流体冲击弹性闸门的变形问题, 表明提出的多分辨率PD-SPH方法兼具较高的计算精度和计算效率; 对含裂缝的Koyna重力坝水力劈裂问题进行模拟计算, 所得裂缝扩展路径与文献结果吻合, 说明该方法适用于涉及结构破坏的流固耦合问题仿真. 最后尝试采用该方法进行流体冲击作用下含裂纹混凝土板崩塌过程数值仿真, 准确描述混凝土板的断裂破坏和全过程中的流体运动. 多分辨率PD-SPH混合方法或可为流?固耦合作用下的结构损伤破坏仿真提供一种新选择.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号