首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conjugate natural convection-conduction heat transfer in a square porous enclosure with a finite-wall thickness is studied numerically in this article. The bottom wall is heated and the upper wall is cooled while the verticals walls are kept adiabatic. The Darcy model is used in the mathematical formulation for the porous layer and the COMSOL Multiphysics software is applied to solve the dimensionless governing equations. The governing parameters considered are the Rayleigh number (100 ≤ Ra ≤ 1000), the wall to porous thermal conductivity ratio (0.44 ≤ K r ≤ 9.90) and the ratio of wall thickness to its height (0.02 ≤ D ≤ 0.4). The results are presented to show the effect of these parameters on the heat transfer and fluid flow characteristics. It is found that the number of contrarotative cells and the strength circulation of each cell can be controlled by the thickness of the bottom wall, the thermal conductivity ratio and the Rayleigh number. It is also observed that increasing either the Rayleigh number or the thermal conductivity ratio or both, and decreasing the thickness of the bounded wall can increase the average Nusselt number for the porous enclosure.  相似文献   

2.
The present investigation deals with the numerical analysis of steady-state laminar buoyancy-driven convection in an inclined triangular enclosure filled with fluid saturated porous media using the Darcy law equation. One wall of the enclosure is isothermally heated and the other is cooled, while the remaining wall is adiabatic. The effect of inclination angle on natural convection is investigated by varying the angle of inclination (φ) between 0° and 360°. The governing transformed equations are solved numerically using a finite-difference method. Obtained results are shown in the form of streamlines, isotherms, mean Nusselt numbers and dimensionless stream function for different values of the Rayleigh number Ra in the range 100 ≤ Ra ≤ 1,000. It is found that the values of the maximum and minimum mean Nusselt number are reached for φ = 330° and φ = 210° , respectively. However, the lowest flow strength is formed at φ = 240° for all values of Ra.  相似文献   

3.
Natural convection flow in a differentially heated square enclosure filled with porous matrix with a solid adiabatic thin fin attached at the hot left wall is studied numerically. The Brinkman–Forchheimer-extended Darcy model is used to solve the momentum equations, in the porous medium. The numerical investigation is done through streamlines, isotherms, and heat transfer rates. A parametric study is carried out using the following parameters: Darcy number (Da) from 10−4 to 10−2, dimensionless thin fin lengths (L p) 0.3, 0.5, and 0.7, dimensionless positions (S p) 0.25, 0.5, and 0.75 with Prandtl numbers (Pr) 0.7 and 100 for Ra = 106. For Da = 10−3 and Pr = 0.7, it is observed that there is a counter clock-wise secondary flow formation around the tip of the fin for S p = 0.5 for all lengths of L p. Moreover when Da = 10−2 the secondary circulation behavior has been observed for S p = 0.25 and 0.75 and there is another circulation between the top wall and the fin that is separated from the primary circulation. However, these secondary circulations features are not observed for Pr = 100. It is also found that the average Nusselt number decreases as the length of the fin increases for all locations. However, the rate of decrease of average Nusselt number becomes slower as the location of fin moves from the bottom wall to the top wall. The overall heat transfer rate can be controlled with a suitable selection of the fin location and length.  相似文献   

4.
Kalabin et al. (Numer. Heat Transfer A 47, 621-631, 2005) studied the unsteady natural convection for the sinusoidal oscillating wall temperature on one side wall and constant average temperature on the opposing side wall. The present article is on the unsteady natural convective heat transfer in an inclined porous cavity with similar temperature boundary conditions as those of Kalabin et al. The inclined angle of the cavity is varied from 0° to 80°. The flow field is modeled with the Brinkman-extended Darcy model. The combined effects of inclination angle of the enclosure and oscillation frequency of wall temperature are studied for Ra* = 103, Da = 10−3, , and Pr=1. Some results are also obtained with the Darcy–Brinkman–Forchheimer model and Darcy’s law and are compared with the present Brinkman-extended Darcy model. The maximal heat transfer rate is attained at the oscillating frequency f = 46.7π and the inclined angle .  相似文献   

5.
Natural convective heat transfer from an isothermal narrow flat plate embedded in a plane adiabatic surface and inclined at moderate positive and negative angles to the vertical has been numerically and experimentally studied. The solution has the Rayleigh number, the dimensionless plate width, the angle of inclination, and the Prandtl number as parameters. Attention was restricted to a Prandtl number of 0.7. The numerical results have been obtained for Rayleigh numbers between 103 and 107 for dimensionless plate widths of between 0.3 and 1.2 and for angles of inclination between +45° and −45°. In the experimental study, results have been obtained for Rayleigh numbers between 4 × 102 and 105 for dimensionless plate widths of 0.4 and 2.5 and for angles of inclination between +45° and −45° to the vertical. Empirical equations for the heat transfer rate have been derived.  相似文献   

6.
Steady state two-dimensional free convection heat transfer from a horizontal, isothermal fin attached cylinder, located between nearly two adiabatic walls is studied experimentally using a Mach–Zehnder interferometer. Effects of the walls inclination angel (θ) on heat transfer from the cylinder is investigated for Rayleigh number ranging from 1000 to 15,500. Two cylinders with different diameters of D = 10 and 20 mm are used to cover wide Rayleigh range. Results indicate that, heat transfer phenomena differ for different Rayleigh number. For Rayleigh numbers lower than 5500, heat transfer rate from cylinder surface is lower than the heat transfer from a single cylinder. In this range by the use of walls, heat transfer from the cylinder decreases slightly and walls’ inclination does not change heat transfer rate from the cylinder surface. For Rayleigh number ranging from 5500 to 15,500, amount of heat transfer from the cylinder surface is less than that of a single cylinder. However, by adding nearly adiabatic walls to experimental model heat transfer mechanism differs and chimney effect between fin and walls increases the heat transfer rate from the cylinder surface. By increasing the walls inclination angel from 0° to 20°, the chimney effect between walls and fin diminishes and heat transfer rate from the cylinder surface is approaching to the heat transfer rate of fin attached cylinder without adiabatic walls.  相似文献   

7.
The main objective of this article is to study the effect of discrete heating on free convection heat transfer in a rectangular porous enclosure containing a heat-generating substance. The left wall of the enclosure has two discrete heat sources and the right wall is isothermally cooled at a lower temperature. The top and bottom walls, and the unheated portions of the left wall are adiabatic. The vorticity–stream function formulation of the governing equations is numerically solved using an implicit finite difference method. The effects of aspect ratio, Darcy number, heat source length, and modified Rayleigh number on the flow and heat transfer are analyzed. The numerical results reveal that the rate of heat transfer increases as the modified Rayleigh number and the Darcy number increases, but decreases on increasing the aspect ratio. The average heat transfer rate is found to be higher at the bottom heater than at the top heater in almost all considered parameter cases except for ε = 0.5. Also, the maximum temperature takes place generally at the top heater except for the case ε = 0.5, where the maximum temperature is found at the bottom heater. Further, the numerical results reveal that the maximum temperature decreases with the modified Rayleigh number and increases with the aspect ratio.  相似文献   

8.
Mixed convection flow in a two-sided lid-driven cavity filled with heat-generating porous medium is numerically investigated. The top and bottom walls are moving in opposite directions at different temperatures, while the side vertical walls are considered adiabatic. The governing equations are solved using the finite-volume method with the SIMPLE algorithm. The numerical procedure adopted in this study yields a consistent performance over a wide range of parameters that were 10−4 ≤ Da ≤ 10−1 and 0 ≤ Ra I ≤ 104. The effects of the parameters involved on the heat transfer characteristics are studied in detail. It is found that the variation of the average Nusselt number is non-linear for increasing values of the Darcy number with uniform or non-uniform heating condition.  相似文献   

9.

In this paper, the melting process of a PCM inside an inclined compound enclosure partially filled with a porous medium is theoretically addressed using a novel deformed mesh method. The sub-domain area of the compound enclosure is made of a porous layer and clear region. The right wall of the enclosure is adjacent to the clear region and is subject to a constant temperature of Tc. The left wall, which is connected to the porous layer, is thick and thermally conductive. The thick wall is partially subject to the hot temperature of Th. The remaining borders of the enclosure are well insulated. The governing equations for flow and heat transfer, including the phase change effects and conjugate heat transfer at the thick wall, are introduced and transformed into a non-dimensional form. A deformed grid method is utilized to track the phase change front in the solid and liquid regions. The melting front movement is controlled by the Stefan condition. The finite element method, along with Arbitrary Eulerian–Lagrangian (ALE) moving grid technique, is employed to solve the non-dimensional governing equations. The modeling approach and the accuracy of the utilized numerical approach are verified by comparison of the results with several experimental and numerical studies, available in the literature. The effect of conjugate wall thickness, inclination angle, and the porous layer thickness on the phase change heat transfer of PCM is investigated. The outcomes show that the rates of melting and heat transfer are enhanced as the thickness of the porous layer increases. The melting rate is the highest when the inclination angle of the enclosure is 45°. An increase in the wall thickness improves the melting rate.

  相似文献   

10.
Transient convection of an incompressible viscous fluid in a square cavity is investigated. The temperature at the top lid is higher than that at the bottom wall, producing a stably stratified overall configuration. The vertical sidewalls are insulated. Flow is initiated by an impulsive start of the sliding motion of the top lid. The transient features of the mixed convection are delineated by procuring numerical solutions in a wide range of parameters, i.e., 400≤Re≤4,000, 1.6×105Gr≤1.6×107. Flows and heat transfer characteristics are described both in the interior core and boundary-layer regions. In the large-time limit, the steady state features are depicted. Parallel experimental efforts are made by employing the particle image velocimetry (PIV) to visualize the steady state flow and thermal fields, together with thermocouple measurements.  相似文献   

11.
 Mixed convection heat transfer in rectangular channels has been investigated experimentally under various operating conditions. The lower surface of the channel is subjected to a uniform heat flux, sidewalls are insulated and adiabatic, and the upper surface is exposed to the surrounding fluid. Experiments were conducted for Pr=0.7, aspect ratios AR=5 and 10, inclination angles 0° ≤ θ ≤ 30°, Reynolds numbers 50 ≤ Re ≤ 1000, and modified Grashof numbers Gr*=7.0 × 105 to 4.0 × 107. From the parametric study, local Nusselt number distributions were obtained and effects of channel inclination, surface heat flux and Reynolds number on the onset of instability were investigated. Results related to the buoyancy affected secondary flow and the onset of instability have been discussed. Some of the results obtained from the experimental measurements are also compared with the literature, and a good agreement was observed. The onset of instability was found to move upstream for increasing Grashof number and increasing aspect ratio. On the other hand, onset of instability was delayed for increasing Reynolds number and increasing inclination angle. Received on 19 March 2001 / Published online: 29 November 2001  相似文献   

12.
In the present study Nu-Ra-α correlations are proposed to calculate the steady-state natural convection heat transfer taking place in 2D air-filled cavities of parallelogrammic section. The thermal conditions and the dimensions of the enclosures permit to cover a large range of Rayleigh numbers, 1.7 × 103  ≤ Ra ≤ 3.0 × 109, suitable for diverse engineering applications. The two active walls of the cavities are kept vertical and isothermal at hot and cold temperatures T h and T c respectively. Separated by a horizontal distance H, they have the same height H and are connected by a closed adiabatic channel whose upper and lower walls can be inclined at an angle α with respect to the horizontal, varying between −60° to +60°. That gives rise to a conducting or insulating cavity, in the convective sense of the term (diode cavity). A computational model based on the finite volume method is used to solve the governing equations. The large number of treated configurations led to propose Nu-Ra-α correlations for large ranges of Ra and α which can be applied to many engineering areas. The results of this numerical study have been successfully compared with calculated and measured available data.  相似文献   

13.
The heat transfer, pressure drop and flow patterns during flow boiling of R407C in a horizontal microfin tube have been investigated. The microfin tube is made of copper with a total fin number of 55 and a helix angle of 15°. The fin height is 0.24 mm and the inner tube diameter at fin root is 8.95 mm. The test tube is 1 m long. It is heated electrically. The experiments have been performed at saturation temperatures between −30°C and +10°C. The mass flux was varied between 25 and 300 kg/m2/s, the heat flux from 20,000 W/m2 down to 1,000 W/m2. The vapour quality was kept constant at 0.1, 0.3, 0.5, 0.7 at the inlet and 0.8, 1.0 at the outlet, respectively. The measured heat transfer coefficient is compared with the correlations of Cavallini et al., Shah as well as Zhang et al. Cavallini’s correlation contains seven experimental constants. After fitting these constants to our measured values, the correlation achieves good agreement. The measured pressure drop is compared to the correlations of Pierre, Kuo and Wang as well as Müller-Steinhagen and Heck. The best agreement is achieved with the correlation of Kuo and Wang. Almost all values are calculated within an accuracy of ±30%. The flow regimes were observed. It is shown, that changes in the flow regime affect the heat transfer coefficient significantly.  相似文献   

14.
A detailed numerical study is carried out to investigate fluid flow and heat transfer characteristics in a channel with heated V corrugated upper and lower plates. The parameters studied include the Reynolds number (Re = 2,000–5,500), angles of V corrugated plates (θ = 20°, 40°, 60°), and constant heat fluxs (q″ = 580, 830, 1,090 W/m2). Numerical results have been validated using the experimented data reported by Naphon, and a good agreement has been found. The angles of V corrugated plates (θ) and the Reynolds number are demonstrated to significantly affect the fluid flow and the heat transfer rate. Increasing the angles of V corrugated plates can make the heat transfer performance become better. The increasing Reynolds number leads to a more complex fluid flow and heat transfer rate. The numerical calculations with a non-equilibrium wall function have a better accuracy than with a standard wall function for solving high Reynolds numbers or complex flow problems.  相似文献   

15.
Two-dimensional numerical studies of flow and temperature fields for turbulent natural convection and surface radiation in inclined differentially heated enclosures are performed. Investigations are carried out over a wide range of Rayleigh numbers from 108 to 1012, with the angle of inclination varying between 0° and 90°. Turbulence is modeled with a novel variant of the k–ε closure model. The predicted results are validated against experimental and numerical results reported in literature. The effect of the inclination of the enclosure on pure turbulent natural convection and the latter’s interaction with surface radiation are brought out. Profiles of turbulent kinetic energy and effective viscosity are studied to observe the net effect on the intensity of turbulence caused by the interaction of natural convection and surface radiation. The variations of local Nusselt number and average Nusselt number are presented for various inclination angles. Marked change in the convective Nusselt number is found with the orientation of enclosure. Also analyzed is the influence of change in emissivity on the flow and heat transfer. A correlation relevant to practical applications in the form of average Nusselt number, as a function of Rayleigh number, Ra, radiation convection parameter, N RC and inclination angle of the enclosure, φ is proposed.  相似文献   

16.
An experimental investigation of flow boiling heat transfer in a commercially available microfin tube with 9.52 mm outer diameter has been carried out. The microfin tube is made of copper with a total fin number of 55 and a helix angle of 15°. The fin height is 0.24 mm and the inner tube diameter at fin root is 8.95 mm. The test tube is 1 m long and is electrically heated. The experiments have been performed at saturation temperatures between 0 and −20°C. The mass flux was varied between 25 and 150 kg/m2s, the heat flux from 15,000 W/m2 down to 1,000 W/m2. All measurements have been performed at constant inlet vapour quality ranging from 0.1 to 0.7. The measured heat transfer coefficients range from 1,300 to 15,700 W/m2K for R134a and from 912 to 11,451 W/m2K for R404A. The mean heat transfer coefficient of R134a is in average 1.5 times higher than for R404A. The mean heat transfer coefficient has been compared with the correlations by Koyama et al. and by Kandlikar. The deviations are within ±30% and ±15%, respectively. The influence of the mass flux on the heat transfer is most significant between 25 and 62.5 kg/m2s, where the flow pattern changes from stratified wavy flow to almost annular flow. This flow pattern transition is shifted to lower mass fluxes for the microfin tube compared to the smooth tube.  相似文献   

17.
Experimental and numerical studies of natural convection in a single phase, closed thermosyphon were carried out using a vertical, rectangular enclosure model. Only one vertical plate plays the role of heat transfer surface having 100 mm height and 100 mm width, and others act as the adiabatic wall made of transparent plexi-glass. The heat transfer surface is separated into three horizontal zones with an equal height; top 1/3 and bottom 1/3 of the surface are cooling and heating zones, respectively and intermediate section is an adiabatic zone. Water is used as the working fluid. Variable parameters are distance D between the heat transfer surface and an adiabatic plate opposite to the heat transfer plate, and temperature difference ΔT between heating and cooling zones. By changing both D and ΔT, three regimes of the natural convection flow; quasi-two-dimensional steady, three-dimensional steady and unsteady flows are observed by means of thermo-sensitive liquid crystal powder and numerically simulated very well by solving a set of governing equations. Received on 17 January 2000  相似文献   

18.
This paper discusses the results of a study related to natural convection cooling of a heat source located on the bottom wall of an inclined isosceles triangular enclosure filled with a Cu water-nanofluid. The right and left walls of the enclosure are both maintained cold at constant equal temperatures, while the remaining parts of the bottom wall are insulated. The study has been carried out for a Rayleigh number in the range 104 ≤ Ra ≤ 106, for a heat source length in the range 0.2 ≤ ε ≤0.8, for a solid volume fraction in the range 0 ≤ ?≤0.06 and for an inclination angle in the range 0° ≤ δ≤45°. Results are presented in the form of streamline contours, isotherms, maximum temperature at the heat source surface and average Nusselt number. It is noticed that the addition of Cu nanoparticles enhances the heat transfer rate and therefore cooling effectiveness for all values of Rayleigh number, especially at low values of Ra. The effect of the inclination angle becomes more noticeable as one increases the value of Ra. For high Rayleigh numbers, a critical value for the inclination angle of δ = 15° is found for which the heat source maximum temperature is highest.  相似文献   

19.
Experiments and numerical simulations have been conducted to study the conjugate heat transfer by natural convection and surface radiation from a planar heat generating element placed centrally between two adiabatic vertical plates. The relevant problem dependent parameters considered in this study are modified Rayleigh number, channel aspect ratio, stream-wise location of the heat generating element, and surface emissivities of the heat generating element and the adiabatic side plates. Experiments are conducted for different values of modified Rayleigh number ranging from 3.2 × 105 to 1.6 × 107 and surface emissivities 0.05, 0.55, 0.75 and 0.85. The interdependence between the heat transfer mechanism and the flow field under the influence of surface radiation on natural convection is explored and discussed. Experimental correlations for total and convective Nusselt number, and dimensionless temperature in terms of relevant parameters have been developed. The mathematical model governing the problem has been numerically solved using a commercial computational fluid dynamics package FLUENT 6.3 and the numerical predictions substantiate the experimental observations.  相似文献   

20.
Two mechanisms of roll initiation are highlighted in a horizontal channel flow, uniformly heated from below, at constant heat flux (Γ = 10, Pr = 7, 50 ≤ Re ≤ 100, 0 ≤ Ra ≤ 106). The first mechanism is the classical one, it occurs for low Rayleigh numbers and is initiated by the lateral wall effect. The second occurs for higher Rayleigh numbers and combines the previous effect with a supercritical vertical temperature gradient in the lower boundary layer, which simultaneously triggers pairs of rolls in the whole zone in between the two lateral rolls. We have found that in the present configuration, the transition between the two roll initiation mechanisms occurs for Ra/Re 2 ≈ 18. Consequently, the heat transfer is significantly enhanced compared to the pure forced convection case owing to the flow pattern responsible of the continuous flooding the heated wall with cold fluid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号