首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The focus of this work is to develop a technique to obtain numerical solution over a long range of time for non-linear multi-body dynamic systems undergoing large amplitude motion. The system considered is an idealization of an important class of problems characterized by non-linear interaction between continuously distributed mass and stiffness and lumped mass and stiffness. This characteristic results in some distinctive features in the system response and also poses significant challenges in obtaining a solution.

In this paper, equations of motion are developed for large amplitude motion of a beam carrying a moving spring–mass. The equations of motion are solved using a new approach that uses average acceleration method to reduce non-linear ordinary differential equations to non-linear algebraic equations. The resulting non-linear algebraic equations are solved using an iterative method developed in this paper. Dynamics of the system is investigated using a time-frequency analysis technique.  相似文献   


2.
The Chebyshev polynomial approximation is applied to the dynamic response problem of a stochastic Duffing system with bounded random parameters, subject to harmonic excitations. The stochastic Duffing system is first reduced into an equivalent deterministic non-linear one for substitution. Then basic non-linear phenomena, such as stochastic saddle-node bifurcation, stochastic symmetry-breaking bifurcation, stochastic period-doubling bifurcation, coexistence of different kinds of steady-state stochastic responses, and stochastic chaos, are studied by numerical simulations. The main feature of stochastic chaos is explored. The suggested method provides a new approach to stochastic dynamic response problems of some dissipative stochastic systems with polynomial non-linearity.  相似文献   

3.
Method of stochastic normal forms   总被引:1,自引:0,他引:1  
—The method of normal forms, originally developed for deterministic non-linear dynamical systems, is extended to include stochastic excitations, with the objective of obtaining an optimal reduction of dimensionality of the system while retaining its essential dynamic characteristics. Similar to the deterministic case, the crucial step in the normal-form computation is to find the so-called resonant terms which cannot be eliminated through a non-linear change of variables. Subsequent to the reduction of dimensionality, the associated stochastic normal form is obtained using a Markovian approximation. It is shown that the second order stochastic terms must be retained, in order to capture the stochastic contributions of the stable modes to the drift terms of the critical modes. Furthermore, for a specific class of non-linear systems, the results obtained from the stochastic normal form analysis are the same as those obtained from an extended stochastic averaging procedure. Thus, for this particular class, the two methods are equivalent.  相似文献   

4.
In this present work, the non-linear behavior of a single-link flexible visco-elastic Cartesian manipulator is studied. The temporal equation of motion with complex coefficients of the system is obtained by using D’Alembert's principle and generalized Galarkin method. The temporal equation of motion contains non-linear geometric and inertia terms with forced and non-linear parametric excitations. It may also be found that linear and non-linear damping terms originated from the geometry of the large deformation of the system exist in this equation of motion. Method of multiple scales is used to determine the approximate solution of the complex temporal equation of motion and to study the stability and bifurcation of the system. The response obtained using method of multiple scales are compared with those obtained by numerically solving the temporal equation of motion and are found to be in good agreement. The response curves obtained using viscoelastic beams are compared with those obtained from a linear Kelvin-Voigt model and also with an equivalent elastic beam. The effect of the material loss factor, amplitude of base excitation, and mass ratio on the steady state responses for both simple and subharmonic resonance conditions are investigated.  相似文献   

5.
Adaptive estimation procedures have gained significant attention by the research community to perform real-time identification of non-linear hysteretic structural systems under arbitrary dynamic excitations. Such techniques promise to provide real-time, robust tracking of system response as well as the ability to track time variation within the system being modeled. An overview of some of the authors’ previous work in this area is presented, along with a discussion of some of the emerging issues being tackled with regard to this class of problems. The trade-offs between parametric-based modeling and non-parametric modeling of non-linear hysteretic dynamic system behavior are discussed. Particular attention is given to (1) the effects of over- and under-parameterization on parameter convergence and system output tracking performance, (2) identifiability in multi-degree-of-freedom structural systems, (3) trade-offs in setting user-defined parameters for adaptive laws, and (4) the effects of noise on measurement integration. Both simulation and experimental results indicating the performance of the parametric and non-parametric methods are presented and their implications are discussed in the context of adaptive structures and structural health monitoring.  相似文献   

6.
In engineering practice, most mechanical and structural systems are modelled as multi-degree-of-freedom (MDOF) systems such as, e.g., the periodic structures. When some components within the systems have non-linear characteristics, the whole system will behave non-linearly. The concept of non-linear output frequency response functions (NOFRFs) was proposed by the authors recently and provides a simple way to investigate non-linear systems in the frequency domain. The present study is concerned with investigating the inherent relationships between the NOFRFs for any two masses of non-linear MDOF systems with multiple non-linear components. The results reveal very important properties of the non-linear systems. These properties clearly indicate how the system linear characteristic parameters govern the propagation of the non-linear effect induced by non-linear components in the system. One potential application of the results is to detect and locate faults in engineering structures which make the structures behave non-linearly.  相似文献   

7.
高建平  方宗德 《力学学报》2000,32(4):502-506
给出两种形式的微分方程周期求解方法,这两种方法对称处理奇异的非线性特征值问题有独特的能力,为具有系统参数的非线性动力系统在整个系统参数范围内的动态特性分析提供了有效的方法。  相似文献   

8.
A new temporal analysis approach using discrete frequency models has recently been introduced by the authors. These models relate the steady-state output of non-linear vibrating systems at each frequency to the excitation at that frequency and the output at other frequencies. The discrete frequency modeling approach is used here to derive an experimental frequency domain indicator function for non-linear vibrations. These indicator functions are autocorrelation functions of residuals from multiple input, multiple output frequency response function estimates. Unlike ordinary spectral coherence functions, which only indicate input–output linearity locally at a single frequency, the autocorrelation functions relate the error at each frequency to the errors at frequencies across the frequency band of interest. This feature enables residual autocorrelation functions to distinguish between system non-linearities and bias errors localized in frequency. Non-linearities in a simulated single-degree-of-freedom system, an analog computer system, and a complicated multiple-degree-of-freedom system are detected using the new indicator function.  相似文献   

9.
This article discusses the Lyapunov exponent estimation of non-linear hysteretic systems by adapting the classical algorithm by Wolf and co-workers [Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A., 1985. Determining Lyapunov exponents from a times series. Physica D 16, 285–317.]. This algorithm evaluates the divergence of nearby orbits by monitoring a reference trajectory, evaluated from the equations of motion of the original hysteretic system, and a perturbed trajectory resulting from the integration of the linearized equations of motion. The main issue of using this algorithm for non-linear, rate-independent, hysteretic systems is related to the procedure of linearization of the equations of motion. The present work establishes a procedure of linearization performing a state space split and assuming an equivalent viscous damping in order to represent hysteretic dissipation in the linearized system. The dynamical response of a single-degree of freedom pseudoelastic shape memory alloy (SMA) oscillator is discussed as an application of the proposed algorithm. The restitution force of the oscillator is provided by an SMA element described by a rate-independent, hysteretic, thermomechanical constitutive model. Two different modeling cases are considered for isothermal and non-isothermal heat transfer conditions, and numerical simulations are performed for both cases. The evaluation of the Lyapunov exponents shows that the proposed procedure is capable of quantifying chaos capturing the non-linear dissipation of hysteretic systems.  相似文献   

10.
11.
Beam structures undergoing finite deflections and rotations in space have extensive application in the subsea industry particularly for the analysis of holistic systems with larger numbers of mooring and riser components. In using the finite element analysis approach, there is an increasing requirement for large element sizes which preserve accuracy with regard to the coupling of axial, bending and torsion response.The authors outline a method for improving the current state of practice for the analysis of riser systems. The approach draws on the convected coordinates method, Euler–Bernoulli beam theory, the principle of virtual work and the finite element method. Two quasi-rotation measures are developed including a quasi-material rotation definition for rotational deformation relative to the convected axis of a beam and a quasi-space rotation definition to deal with the path dependent nature of rotations in three dimensions.The novel aspect of this work is to relate the rate of change of the quasi-material rotation vector along the beam axis to a linear transformation of the beam axis rate-of-rotation vector through utilising the convected coordinates axes system. In this way, incremental values of quasi-material rotation are directly linked to incremental values of nodal quasi-space rotation and a global Newton–Raphson solution technique for interconnecting beam elements is straightforward to assemble.Furthermore, this leads to accurate definitions of coupled axial, bending and torque response for beams with significant deflection. The approach has particular advantages in the analysis of subsea riser sections. Also, the accuracy of the solution is preserved for a fewer number of elements compared to alternative solutions for computationally sensitive load cases with highly non-linear loading regimes.  相似文献   

12.
This work addresses the phase shift adjustment between the external forcing and the responses for strongly non-linear dynamic systems calculated by Harmonic Balance Method (HBM). The HBM offers fast and robust solutions for strongly non-linear systems operating in periodic regimes, however, the phase information when applying the harmonic balance method is lost. In this paper, a practical scheme for calculating the phase difference for a piecewise oscillator mimicking a vibro-impact system is proposed.  相似文献   

13.
The present work deals with the non-linear vibration of a harmonically excited single link roller-supported flexible Cartesian manipulator with a payload. The governing equation of motion of this system is developed using extended Hamilton's principle, which is reduced to the second-order temporal differential equation of motion, by using generalized Galerkin's method. This equation of motion contains both cubic non-linearities of geometric and inertial type in addition to linear forced and non-linear parametric excitation terms. Method of multiple scales is used to solve this non-linear equation and study the stability and bifurcations of the system. Influence of amplitude of the base excitation and mass ratio on the steady state response of the system is investigated for both simple and subharmonic resonance conditions. Critical bifurcation points are determined from the fixed-point responses and periodic, quasi-periodic responses are also found for different system parameters. The results obtained using the perturbation analysis are compared with the previously published experimental work and are found to be in good agreement. This work will be useful for the designer of a flexible manipulator.  相似文献   

14.
Most structural health monitoring and damage detection strategies utilize dynamic response information to identify the existence, location, and magnitude of damage. Traditional model-based techniques seek to identify parametric changes in a linear dynamic model, while non-model-based techniques focus on changes in the temporal and frequency characteristics of the system response. Because restoring forces in base-excited structures can exhibit highly non-linear characteristics, non-linear model-based approaches may be better suited for reliable health monitoring and damage detection. This paper presents the application of a novel intelligent parameter varying (IPV) modeling and system identification technique, developed by the authors, to detect damage in base-excited structures. This IPV technique overcomes specific limitations of traditional model-based and non-model-based approaches, as demonstrated through comparative simulations with wavelet analysis methods. These simulations confirm the effectiveness of the IPV technique, and show that performance is not compromised by the introduction of realistic structural non-linearities and ground excitation characteristics.  相似文献   

15.
Using Donnell non-linear shallow shell equations in terms of the displacements and the potential flow theory, this work presents a qualitatively accurate low dimensional model to study the non-linear dynamic behavior and stability of a fluid-filled cylindrical shell under lateral pressure and axial loading. First, the reduced order model is derived taking into account the influence of the driven and companion modes. For this, a modal solution is obtained by a perturbation technique which satisfies exactly the in-plane equilibrium equations and all boundary, continuity, and symmetry conditions. Finally, the equation of motion in the transversal direction is discretized by the Galerkin method. The importance of each mode in the proposed modal expansion is studied using the proper orthogonal decomposition. The quality of the proposed model is corroborated by studying the convergence of frequency–amplitude relations, resonance curves, bifurcation diagrams, and time responses. The parametric analysis clarifies the influence of the lateral and axial loads on the non-linear vibrations and stability of the liquid-filled shell. Finally, the global response of the system is investigated in order to quantify the degree of safety of the shell in the presence of external perturbations through the use of bifurcation diagrams and basins of attraction. This allows one to evaluate the safety and dynamic integrity of the cylindrical shell in a dynamic environment.  相似文献   

16.
This note extends the work of previous authors to the closed orbits of non-linear oscillatory systems. The simple phase plane analysis is used.  相似文献   

17.
Min  Chaoqing  Dahlmann  Martin  Sattel  Thomas 《Nonlinear dynamics》2021,103(1):239-254

A novel semi-active vibration control concept with a serial-switch-stiffness-system was previously presented in our work. Differing from conventional vibration control systems, this system does not dissipate but converts vibration energy as potential energy stored in springs and then reacts against external disturbance. As a piecewise linear system, whether or not energy conversion limit happens is an interesting nonlinear dynamic issue related to the systems steady state response. This paper formulates this issue in depth using the approach called equivalence in control. The systems control force represented by the converted vibration energy is approximately decomposed into two portions. One is responsible for low-frequency free response and the other for high-frequency switching response. An equivalent linear system suffering from a decomposed high-frequency switching force is obtained instead of the original switched system. The steady state response of the disturbed system can be delivered through linear superposition as executed in a linear system. Energy conversion limit occurring in the system under a harmonic disturbance is numerically shown by means of fast Fourier transformation. Analytical formulation and numerical simulation for open- and closed-loop control of the system are further carried out, respectively. The results give that the proposed approach is capable of solving the stead state response of the switched system accurately, and meanwhile, energy conversion limit occurs in the vibration control system indeed. Experimental discussion is also executed.

  相似文献   

18.
In this study the dynamic response of autonomous mainly dissipative multi D.O.F. systems under step loading is re-examined. Based on the geometrical point of view of the theory of non-linear dynamical systems and the rapidly developing theory of attractors, the investigation focuses on limit point like systems, with snapping as their salient feature. It is found that dynamic buckling (through a saddle or its neighborhood) , although leading to a large amplitude motion, may be associated with a point attractor response on the pre-buckling fixed point, depending on the amount of damping considered in close conjunction with the motion channel geometry and the total potential characteristics of all (stable and complementary) equilibria. For such systems, only a straightforward fully non-linear dynamic analysis can provide valid information on the global dynamic stability, since the shape of the total potential hypersurface may become very complicated, rendering energy aspects practically not applicable. A 2-D.O.F. model, simulating an asymmetric suspended roof is comprehensively analyzed to capture the above findings, and a parametric investigation is carried out, revealing a variety of new dynamic response types and leading to a more accurate insight of the stability of motion in the large.  相似文献   

19.
The problem of the dynamic response of flat rectangular sandwich panels subjected to underwater and in-air explosions is analyzed. The study is carried out in the framework of a geometrically non-linear model of sandwich structures featuring anisotropic laminated face sheets and an orthotropic core, in conjunction with the unsteady pressure generated by an explosion. Effects of the core and of the orthotropy of its material, as well as those related to the ply-thickness, directional material property and stacking sequence of face sheets, geometrical non-linearities and of the structural damping ratio are investigated, and their implications upon the dynamic response are highlighted. To the best of the authors’ knowledge, the specialized literature addressing the dynamic response of sandwich structures to underwater and in-air explosions is rather scanty. This work is likely to fill a gap in the specialized literature on this topic.  相似文献   

20.
The feasibility and benefits of applying a novel multi-variable dynamic gain scheduling (DGS) approach to a complex ‘industry-scale’ aircraft model are investigated; the latter model being a non-linear representation of the intrinsically unstable F16 aircraft incorporating detailed aerodynamic data. DGS is a novel control approach, which involves scheduling controller gains with one (or more) of the system states whilst accounting for the ‘hidden coupling terms’ ensuring a near-ideal response. It is effective for non-linear systems exhibiting rapid dynamic changes between operating points. Recently, this approach has been extended to a multi-variable and multi-input context. Hence, unlike previous DGS work on realistic aircraft models, relevant feedback gains are to be scheduled with all (i.e. two) state variables in order to demonstrate the ability of the approach to compensate for non-linearity during rapid manoeuvres and consequently achieving better flying qualities over a range of conditions than standard gain scheduling. Time history simulations are used to draw comparisons with the more traditional ‘static’ gain scheduling and input gain scheduling methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号