首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 199 毫秒
1.
2.
This paper studies the mechanics of soft active materials where the actuation is generated due to the formation of phases that are stress-free at the moment of their creation and therefore experience no deformation in the associated configuration. Phase formation is a continuous time-dependent process, which results in individual phases forming at different times and in different configurations of the material body, and thus it is coupled with mechanical deformation. Subsequent deformation of the material body results in individual phases experiencing different states of deformation and the overall material response results from the combined responses of the individual phases weighted by their respective volume fractions. Therefore, a great challenge in modeling the mechanics of soft active materials with evolving phases is to track the deformation and evolution of individual phases formed at different times and in different configurations. In this paper, a generalized one-dimensional model framework is presented to address this challenge. However, this model proves to be computationally inefficient. In response, an effective phase model is developed that tracks the combined deformation histories of new phases through a single, effective deformation. Both the general and effective phase models are evaluated with two fundamentally distinct phase evolution rules for three common mechanical problems: extension, stress relaxation, and creep. The first evolution rule represents a discrete transition from one phase to another while the second rule corresponds to a general transition from several phases into one phase. The effective phase model demonstrates excellent agreement with the generalized theory for all three mechanical problems considered under both types of evolution rules.  相似文献   

3.
We present a damage model for softening materials with evolving nonlocal interactions. The thermodynamic implications and the material stability issue are addressed. The proposed nonlocal averaging scheme provides the obtained constitutive models with an evolving nonlocal interaction which is activated only when damage occurs. In the analysis of structures made of quasi-brittle materials, this feature helps not only to overcome some issues with the incorrect initiation of damage but also to better control the evolving size of the active fracture process zone. This is an essential feature that is usually not considered in depth in many existing nonlocal approaches to the continuum modelling of quasi-brittle fracture. Numerical examples are given to demonstrate features of the proposed modelling approach.  相似文献   

4.
In this paper we study the two-dimensional deformation of an anisotropic elliptic inclusion embedded in an infinite dissimilar anisotropic matrix subject to a uniform loading at infinity. The interface is assumed to be imperfectly bonded. The surface traction is continuous across the interface while the displacement is discontinuous. The interface function that relates the surface traction and the displacement discontinuity across the interface is a tensor function, not a scalar function as employed by most work in the literature. We choose the interface function such that the stress inside the elliptic inclusion is uniform. Explicit solution for the inclusion and the matrix is presented. The materials in the inclusion and in the matrix are general anisotropic elastic materials so that the antiplane and inplane displacements are coupled regardless of the applied loading at infinity. T.C.T. Ting is Professor Emeritus of University of Illinois at Chicago and Consulting Professor of Stanford University.  相似文献   

5.
A novel continuum damage mechanics-based framework is proposed to model the micro-damage healing phenomenon in the materials that tend to self-heal. This framework extends the well-known Kachanov’s (1958) effective configuration and the concept of the effective stress space to self-healing materials by introducing the healing natural configuration in order to incorporate the micro-damage healing effects. Analytical relations are derived to relate strain tensors and tangent stiffness moduli in the nominal and healing configurations for each postulated transformation hypothesis (i.e. strain, elastic strain energy, and power equivalence hypotheses). The ability of the proposed model to explain micro-damage healing is demonstrated by presenting several examples. Also, a general thermodynamic framework for constitutive modeling of damage and micro-damage healing mechanisms is presented.  相似文献   

6.
Radial deformations of an infinite medium surrounding a traction-free spherical cavity are considered. The body is composed of an isotropic, incompressible elastic material and is subjected to a uniform pressure at infinity. The possibility of void collapse (i.e. the void radius becoming zero at a finite value of the applied stress) is examined. This does not occur in all materials. The class of materials that do exhibit this phenomenon is determined, and for such materials, an explicit expression for the value of the applied pressure at which collapse occurs is derived. The stability of the deformation and the influence of a finite outer radius are also considered. The results are illustrated for a particular class of power-law materials. In certain respects, the present results for void collapse are complementary to Ball (1982)'s results for cavitation in an incompressible elastic material.Some brief observations on void collapse in compressible materials are made. The collapse of a void under non-symmetric conditions is also discussed by utilizing a solution obtained by Varley and Cumberbatch (1977, 1980).The results reported here were obtained in the course of an investigation supported in part by the U.S. Army Research Office.  相似文献   

7.
This paper develops an accurate and computationally efficient homogenization-based continuum plasticity-damage (HCPD) model for macroscopic analysis of ductile failure in porous ductile materials containing brittle inclusions. Example of these materials are cast alloys such as aluminum and metal matrix composites. The overall framework of the HCPD model follows the structure of the anisotropic Gurson-Tvergaard-Needleman (GTN) type elasto-plasticity model for porous ductile materials. The HCPD model is assumed to be orthotropic in an evolving material principal coordinate system throughout the deformation history. The GTN model parameters are calibrated from homogenization of evolving variables in representative volume elements (RVE) of the microstructure containing inclusions and voids. Micromechanical analyses for this purpose are conducted by the locally enriched Voronoi cell finite element model (LE-VCFEM) [Hu, C., Ghosh, S., 2008. Locally enhanced Voronoi cell finite element model (LE-VCFEM) for simulating evolving fracture in ductile microstructures containing inclusions. Int. J. Numer. Methods Eng. 76(12), 1955-1992]. The model also introduces a novel void nucleation criterion from micromechanical damage evolution due to combined inclusion and matrix cracking. The paper discusses methods for estimating RVE length scales in microstructures with non-uniform dispersions, as well as macroscopic characteristic length scales for non-local constitutive models. Comparison of results from the anisotropic HCPD model with homogenized micromechanics shows excellent agreement. The HCPD model has a huge efficiency advantage over micromechanics models. Hence, it is a very effective tool in predicting macroscopic damage in structures with direct reference to microstructural composition.  相似文献   

8.
Recently, [Rao, I.J., Rajagopal, K.R., 2007. Status of the K-BKZ model within the framework of materials with multiple natural configurations. Journal of Non-Newtonian Fluid Mechanics, 141, 79–84] showed that the K-BKZ Model is a special sub-class of models based on a thermodynamic framework that takes into account the fact that bodies are capable of existing stress free in multiple configurations with special choices being made for the way in which the body stores energy and the way it dissipates energy. They also showed that several generalizations of the K-BKZ model are possible. In this short note we show that two distinct methods of storing energy and dissipating energy lead to the classical Maxwell model. That is, in addition to the classical choice for the storage of energy and rate of dissipation (the usual spring dashpot analogy) a more complicated choice also leads to the same model. This result is rather important as it shows that a variety of means for storing and dissipating energy can lead to the same mechanical response, when one restricts oneself to purely mechanical considerations.  相似文献   

9.
压电复合材料中的Eshelby夹杂问题   总被引:1,自引:0,他引:1  
王旭  沈亚鹏 《力学学报》2003,35(1):26-32
通过采用解析延拓和共形映射技术,获得了压电复合材料中有关Eshelby夹杂几个典型问题的精确弹性解答,即横观各向同性压电介质中任意形状的Eshelby夹杂与圆柱异相夹杂间相互作用;一般各向异性压电介质中任意形状的Eshelby夹杂与双压电材料所形成界面的相互作用.成功求解这些问题的关健在于构造一个辅助函数.与Ru所采用的方法不同,所引入的辅助函数在无穷远点不存在极点,从而使得所展开的分析更加自然合理.分析结果清楚地揭示出Eshelby夹杂的存在对压电复合材料机电耦合响应将产生不容被忽视的影响.很典型的一个例于是当一个Eshelby椭圆夹杂与圆柱异相夹杂相互作用时,每个夹杂体内部的应力场和电场都将是不均匀的;另一个例于是位于界面附近的Eshelby夹杂有可能是界面发生损伤的一个重要原因.  相似文献   

10.
The question of the natural motion density in dynamics problems of elastic shells is considered. Motions are studied for which an exponential growth in amplitude with time occurs. The number of natural motions incident in a given range of variation of the exponent is computed by using an idea of R. Courant. The governing natural motions and condensation points at which the natural motion density tends to infinity are found. The condensation points and governing motions are compared in specific examples.  相似文献   

11.
In this paper we study models for contact problems of materials consisting of an elastic part (without memory) and a viscoelastic part, where the dissipation given by the memory is effective. We show that the solution of the corresponding viscoelastic equation decays exponentially to zero as time goes to infinity, provided the relaxation function also decays exponentially, no matter how small is the dissipative part of the material.  相似文献   

12.
The time-dependent Navier–Stokes system is studied in a two-dimensional domain with strip-like outlets to infinity in weighted Sobolev function spaces. It is proved that under natural compatibility conditions there exists a unique solution with prescribed fluxes over cross-sections of outlets to infinity which tends in each outlet to the corresponding time-dependent Poiseuille flow. The obtained results are proved for arbitrary large norms of the data (in particular, for arbitrary fluxes) and globally in time. The authors are supported by EC FP6 MC–ToK programme SPADE2, MTKD–CT–2004–014508.  相似文献   

13.
Finite memory viscoelastic materials are of interest because (a) they are not necessarily experimentally distinguishable from materials with infinite memory; and (b) the assumption of infinite memory can, in certain contexts, lead to results that run counter to physical intuition. An example of this - the quasi-static viscoelastic membrane in a frictional medium - is discussed. It is shown that, for a finite memory material, the singularity structure of the Fourier transform of the relaxation function derivative is quite different from the infinite memory case in the sense that it is an entire function with all its singularities being essential singularities at infinity. The formula for the minimum free energy [1] is still valid in this case. In contrast to the work function, this quantity, and all other functions of the minimal state, depend only on the values of the history over the period when the relaxation function derivative is nonzero. The factorization required to determine the form of the minimum free energy can be carried out explicitly for simple step-function choices of the relaxation function derivative. The two simplest cases are fully worked through and explicit formulae are given for all relevant quantities.  相似文献   

14.
周期性吸声多孔材料微结构优化设计   总被引:2,自引:1,他引:1  
多孔材料的吸声性能与材料孔隙率以及材料微结构几何构型存在密切相关.本文采用有限元方法研究了材料微观结构与宏观声学性能参数之间的关系,分析了通孔材料微结构的开孔形状、孔隙率以及孔隙尺寸对材料吸声性能的影响,并建立了在特定频率下具有高声吸收性能的通孔材料微结构几何构型的设计理论和方法,得到了具有较高声能吸收率的多孔材料微结构构型.  相似文献   

15.
An approximate solution to the problem of compression of an infinite layer of material between rough parallel plates is constructed with the creep equations being fulfilled. Constitutive relations in accordance with which the equivalent stress tends to a finite value as the equivalent strain rate tends to infinity are used. The behavior of the solution in the neighborhood of the maximum friction surface is studied. It is shown that the existence of the solution depends on one of the parameters included in the constitutive equations. If the solution exists, the equivalent strain rate tends to infinity in the neighborhood of the maximum friction surface, and the asymptotic behavior of the solution depends on the same parameter. It is established that there is a range of this parameter in which the nature of the change in the equivalent strain rate near the maximum friction surface is the same as in the solutions for rigid plastic materials.  相似文献   

16.
Generalized 2D problem of piezoelectric media containing collinear cracks   总被引:3,自引:0,他引:3  
The generalized 2D problem in piezoelectric media with collinear cracks is addressed based on Stroh's formulation and the exact electric boundary conditions on the crack faces. Exact solutions are obtained, respectively, for two special cases: one is that a piezoelectric solid withN collinear cracks is subjected to uniform loads at infinity, and the other is that a piezoelectric solid containing a single crack is subjected to a line load at an arbitrary point. It is shown when uniform loads are applied at infinity or on the crack faces that, the stress intensity factors are the same as those of isotropic materials, while the intensity factor of electric displacement is dependent on the material constants and the applied mechanical loads, but not on the applied electric loads. Moreover, it is found that the electric field inside any crack is not equal to zero, which is related to the material properties and applied mechanical-electric loads. The project supported by the National Natural Science Foundation of China (19772004)  相似文献   

17.
Smart materials exhibit time-varying properties while time-varying external field is applied. To investigate the one-dimensional (1-D) homogeneous time-varying properties, a moving property interface (MPI) model is proposed, and the propagation of linear elastic waves at 1-D MPI is studied in this paper. Based on the idea of weak solutions and an infinity approximation, a novel method to deal with the difficulties in using the continuities to study the waves at MPI is also proposed. Some interesting phenomena are revealed: (i) besides wave impedance, the property interface motion and wave velocity are also very important factors that influence the wave propagation; (ii) at MPI, there may exist shock waves; (iii) the property interface motion has a significant impact on the wave frequency and energy. This research provides a theoretical viewpoint in the study of smart materials with a time-dependent mechanical properties at different loading conditions.  相似文献   

18.
The stress and electric fields in electrostrictive materials under general electric loading at infinity are obtained in this paper. It is shown that the pseudo total stresses are continuous in the whole body. The elliptic inhomogeneity problem is first discussed in this paper and its solution is also given. The results show that the stress in the inhomogeneity is not uniform which is different from the solution of Eshelby theory for elastic materials. When the inhomogeneity and matrix have the same dielectric permittivity or the matrix is a non-electrostrictive material, the stress field is uniform in the inhomogeneity. The form of stress function is simple when the inhomogeneity degenerates to a circle.  相似文献   

19.
The problem of a branched crack consisting of a main crack and a straight branch starting from one of its tip located in an infinite elastic sheet is considered under the assumptions of two-dimensional theory of Elasticity. Employing Kolosov-Muskhelishvili representation of the stress function and other well known techniques the problem is reduced to the solution of an integral equation. The nature of the stress singularity at the re-entrant corner, where the two branches of the crack meet, is discussed. Based upon a numerical solution of the integral equation the stress intensity factors at the two tips are computed for two types of prescribed traction at infinity and various geometric configurations of the branched crack.  相似文献   

20.
Within the context of plane stress assumptions and approximations, an analytical solution is derived for the finite deformation of a traction-free elliptical hole in an infinite plate with tensile tractions at infinity. The plate is composed of a non-work-hardening material satisfying the Tresca yield condition under a deformation theory of plasticity. The governing partial differential equations are parabolic in nature and consequently have a single family of mathematical characteristics or slip lines associated with them. Each particle of mass follows a rectilinear path in the plane defined by its slip line which emanates orthogonally from the elliptical hole. By assuming a constant speed for each particle in the plane, a state of plane equilibrium is realized. The originally elliptical hole expands in the shape of an oval which is a parallel curve to the original ellipse. The slip lines remain orthogonal to the evolving oval hole as a necessary condition for a traction-free interior boundary. This solution also satisfies the material stability criterion that the rate of plastic work be positive throughout the entire body for all time. As this solution has some features associated with large deformation crack problems at elevated temperatures, possible applications include secondary or steady-state creep.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号