首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Two-layer flow of magnetic fluid and non-magnetic silicone oil was simulated numerically. The continuity equation, momentum equations, kinematic equation, and magnetic potential equation were solved in two-dimensional Cartesian coordinate. PLIC (piecewise linear integration calculation) VOF (volume of fluid) scheme was employed to track the free interface. Surface tension was treated via a continuous surface force (CSF) model that ensures robustness and accuracy. The influences of applied magnetic field, inlet velocity profile, initial surface disturbance of interface and surface tension were analyzed. The computed interface shapes at different conditions were compared with experimental observation.  相似文献   

2.
This paper is about the dispersion analysis of surface waves propagating at the interface between an inviscid fluid and a higher gradient homogeneous elastic solid modelled as a dipolar gradient continuum. In order to compare the results, a second gradient model is also evaluated. The analysis is carried out by finding the roots of the secular equation, and by carefully studying their physical meaning. As it is well known, higher gradient continua are dispersive, i.e. phase and group velocities are frequency dependent. As a consequence, the existence of surface waves will indeed depend on frequency. In order to investigate the behaviour of surface waves in this specific fluid–solid configuration, a complete dispersion analysis is performed, with a particular focus on the frequency range in which the phase velocity of shear waves is lower than the speed of waves of the fluid. Surface waves of the type Leaky Rayleigh and Scholte–Stoneley are observed in this frequency range. This work extends the knowledge on surface waves in the case of higher gradient solids and applications of these results can be found in the field of non-destructive damage evaluation in micro structured materials, composites, metamaterials and biological tissues.  相似文献   

3.
A kinematic scheme of deformation and flow of loose materials based on the model of a discrete stochastic medium is put forward. The scheme is constructed as applied to the problems of gravitational discharge of loose materials from silos, bunkers etc. and may also be used in the problems of the motion of a support wall and the introduction of solids into a loose medium. A modification of the scheme enables us to account for the effect of loosening (decrease in density) of material at discharge. The algorithms are implemented on an IBM PC using Turbo-Pascal tools. The process of flow is modelled directly on the display monitor.  相似文献   

4.
In this paper steady flow of a third grade fluid through porous space is considered. Modified Darcy’s law for third grade fluid in a porous space has been introduced. The governing non-linear equation is first modelled and then solved using homotopy analysis method (HAM). The convergence of the obtained series solution is discussed. The effects of the emerging parameters on the velocity field are seen. It is noted that meaningful solution exists only in the case of suction.  相似文献   

5.
In the present study, five different invert trap configurations (rectangular with and without lids on both sides; trapezoidal, trapezoidal with rectangular base and rectangular with trapezoidal base with lids on both sides) were simulated for both two-dimensional (2D) and three-dimensional (3D) flow conditions for three sediment types (sand, styrocell and plastic beads) at six flow rates (0.35, 0.70, 1.05, 1.35, 4.55 and 9.95L/s) for each trap. Computational fluid dynamics (CFD)-based modeling using FLUENT software with Renormalization Group (RNG) k-ε model along with discrete phase model (DPM) were used in the simulations. A hexagonal/tetrahedral and map-type non-uniform grid was chosen to discretize the entire computational domain and a control volume finite difference method was used to solve the governing equations. The flow rates selected in the present study cover the entire range of flow rate expected for dry weather and monsoon. The simulation is capable of differentiating between 2D and 3D modeling of particle trajectories, the effects of flow rate and trap geometry on flow patterns developed in the trap. The sediment retention ratio for 2D is higher than that for 3D modeling for all flow conditions, particle types and model geometry due to inclusion of lateral effects in 3D modeling. The invert trap having rectangular shape with trapezoidal base is found to be the most efficient configuration in both 2D and 3D modeling.  相似文献   

6.
轮胎滑水的CFD计算方法研究   总被引:1,自引:0,他引:1  
针对轮胎滑水现象,采用VOF模型(Volume of Fluid Model)进行了CFD数值模拟计算。建立了分析对象的物理模型(轮胎模型、水模型和边界条件及初始条件)和RNGk-ε湍流模型;采用多块网格技术对计算域进行了离散,重点模拟分析三种不同入口速度下的动水压力变化和轮胎附近流场变化。最后和国外学者所做的试验和相关文献结果进行了对比,表明本文介绍的方法是可行的,该方法为轮胎产品开发提供了有效经济的技术支持。  相似文献   

7.
A lattice gas automaton (LGA) model is proposed to simulate fluid flow in heterogeneous porous media. Permeability fields are created by distributing scatterers (solids, grains) within the fluid flow field. These scatterers act as obstacles to flow. The loss in momentum of the fluid is directly related to the permeability of the lattice gas model. It is shown that by varying the probability of occurrence of solid nodes, the permeability of the porous medium can be changed over several orders of magnitude. To simulate fluid flow in heterogeneous permeability fields, isotropic, anisotropic, random, and correlated permeability fields are generated. The lattice gas model developed here is then used to obtain the effective permeability as well as the local fluid flow field. The method presented here can be used to simulate fluid flow in arbitrarily complex heterogeneous porous media.  相似文献   

8.
Numerical simulation of primary atomization at high Reynolds number is still a challenging problem. In this work a multiscale approach for the numerical simulation of liquid jet primary atomization is applied, using an Eulerian-Lagrangian coupling. In this approach, an Eulerian volume of fluid (VOF) method, where the Reynolds stresses are closed by a Reynolds stress model is applied to model the global spreading of the liquid jet. The formation of the micro-scale droplets, which are usually smaller than the grid spacing in the computational domain, is modelled by an energy-based sub-grid model. Where the disruptive forces (turbulence and surface pressure) of turbulent eddies near the surface of the jet overcome the capillary forces, droplets are released with the local properties of the corresponding eddies. The dynamics of the generated droplets are modelled using Lagrangian particle tracking (LPT). A numerical coupling between the Eulerian and Lagrangian frames is then established via source terms in conservation equations. As a follow-up study to our investigation in Saeedipour et al. (2016a), the present paper aims at modelling drop formation from liquid jets at high Reynolds numbers in the atomization regime and validating the simulation results against in-house experiments. For this purpose, phase-Doppler anemometry (PDA) was used to measure the droplet size and velocity distributions in sprays produced by water jet breakup at different Reynolds numbers in the atomization regime. The spray properties, such as droplet size spectra, local and global Sauter-mean drop sizes and velocity distributions obtained from the simulations are compared with experiment at various locations with very good agreement.  相似文献   

9.
Air and water velocity fields have been simulated during natural convection, using a two-dimensional volume of fluid (VOF) model. The results have shown that during unstable thermal stratification, the root-mean-square (RMS) airside velocities are an order of magnitude higher than the RMS waterside velocities, whereas, during the stable thermal stratification, the velocity magnitudes are comparable for air and water sides. Furthermore, the magnitude of the air velocity changed more rapidly with the change in the bulk air–water temperature difference than the water velocity, indicating that the air velocities are more sensitive to the bulk air and water temperature difference than the water velocities. A physical model of the heat and mass transfer across the air–water interface is defined. According to this model, the vortices on the air and water sides play an important role in enhancing the heat and mass transfer. Due to the significance of the flow velocities in the transport process, it has been proposed that the correlations for the heat and mass transfer during natural convection should be improved by incorporating the flow velocity as a parameter.  相似文献   

10.
固体火箭燃气射流驱动液柱过程的CFD分析   总被引:1,自引:0,他引:1  
王健  阮文俊  王浩  张磊 《爆炸与冲击》2017,37(2):186-193
固体火箭燃气射流驱动液柱过程会产生一个复杂的非稳态多相流场,为了研究液柱对固体火箭发动机工作过程中射流流场的降温效果,并揭示燃气冲击液柱的流动演化和气水之间的相互作用,利用FLUENT软件中耦合了液态水汽化方程的VOF多相流计算模型对燃气与液柱之间的耦合流动及相变过程进行了数值模拟,并与无液柱情况下射流流场的计算结果进行了对比分析。计算结果表明,当有液柱平衡体时射流流场中的压力、温度、速度波动幅度均减小,减弱了射流流场中的湍流脉动强度;液柱与燃气之间的汽化以及液柱的阻碍作用减小了射流流场的轴向发展位移,尾管后的完全发展射流流场核心区域内的压力峰值降低了0.9 MPa,温度峰值降低了503 K,速度峰值降低了291 m/s,验证了实验中液柱对燃气射流流场的降温效果。  相似文献   

11.
The dynamic behavior of a magma melt filling a slot channel (crack) in a closed explosive hydrodynamic structure is considered. The explosive hydrodynamic structure includes the volcano focal point with a connected vertical channel (conduit) closed by a slug and a system of internal cracks (dikes) near the dome, as well as a crater open into the atmosphere. A two-dimensional model of a slot eruption is constructed with the use of the Iordanskii–Kogarko–van Wijngaarden mathematical model of two-phase media and the kinetics that describes the basic physical processes in a heavy magma saturated by the gas behind the decompression wave front. A numerical scheme is developed for analyzing the influence of the boundary conditions on the conduit walls and scale factors on the melt flow structure, the role of viscosity in static modes, and dynamic formulations with allowance for diffusion processes and increasing (by several orders of magnitude) viscosity. Results of the numerical analysis of the initial stage of cavitation process evolution are discussed.  相似文献   

12.
A numerical method was investigated for multiphase fields consisting of compressible gas and arbitrarily shaped solids. Since the proposed model is based on a one‐fluid model in which variables are averaged according to the phase fractions in the computational cells; it enables us to estimate gas‐solid momentum and thermal interactions without setting up adapting grids even if the solids have extremely complicated shapes. The governing equations are derived with the characteristics of an ideal gas assuming the specific heat to be uniform in the multiphase field. The derived equations in conservative form are discretized with a finite volume method. In addition, the pressure is calculated implicitly in a similar way to incompressible flow solvers. Because of these improvements, the proposed method allows us to calculate low Mach number compressible flows free from the Courant‐Friedrichs‐Lewy condition based on the speed of sound and to conserve the mass more accurately. To confirm the validity of the proposed method, it was applied to natural convection around an isothermal cylinder and a heat‐conducting pipe. In comparison with previous studies, it was confirmed that the gas flows and temperature distributions are predicted reasonably. In addition, a numerical experiment was conducted under more complicated conditions, namely, gas leaking from a container including heat sources. As a result, it was demonstrated that the proposed method enables us to predict unsteady variations of pressure and temperature distributions in the container due to the leakage while still conserving mass accurately.  相似文献   

13.
Randomness in the source condition other than the heterogeneity in the system parameters can also be a major source of uncertainty in the concentration field. Hence, a more general form of the problem formulation is necessary to consider randomness in both source condition and system parameters. When the source varies with time, the unsteady problem, can be solved using the unit response function. In the case of random system parameters, the response function becomes a random function and depends on the randomness in the system parameters. In the present study, the source is modelled as a random discrete process with either a fixed interval or a random interval (the Poisson process). In this study, an attempt is made to assess the relative effects of various types of source uncertainties on the probabilistic behaviour of the concentration in a porous medium while the system parameters are also modelled as random fields. Analytical expressions of mean and covariance of concentration due to random discrete source are derived in terms of mean and covariance of unit response function. The probabilistic behaviour of the random response function is obtained by using a perturbation‐based stochastic finite element method (SFEM), which performs well for mild heterogeneity. The proposed method is applied for analysing both the 1‐D as well as the 3‐D solute transport problems. The results obtained with SFEM are compared with the Monte Carlo simulation for 1‐D problems. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
In the present study, five different invert trap configurations (rectangular with and without lids on both sides; trapezoidal, trapezoidal with rectangular base and rectangular with trapezoidal base with lids on both sides) were simulated for both two-dimensional (2D) and three-dimensional (3D) flow conditions for three sediment types (sand, styrocell and plastic beads) at six flow rates (0.35, 0.70, 1.05, 1.35, 4.55 and 9.95 L/s) for each trap. Computational fluid dynamics (CFD)-based modeling using FLUENT software with Renormalization Group (RNG) k-e model along with discrete phase model (DPM) were used in the simulations. A hexagonal/tetrahedral and map-type non-uniform grid was chosen to discretize the entire computational domain and a control volume finite difference method was used to solve the governing equations. The flow rates selected in the present study cover the entire range of flow rate expected for dry weather and monsoon. The simulation is capable of differentiating between 2D and 3D modeling of particle trajectories, the effects of flow rate and trap geometry on flow patterns developed in the trap. The sediment retention ratio for 2D is higher than that for 3D modeling for all flow conditions, particle types and model geometry due to inclusion of lateral effects in 3D modeling. The invert trap having rectangular shape with trapezoidal base is found to be the most efficient configuration in both 2D and 3D modeling.  相似文献   

15.
In this paper, we propose a model for a sewer network coupled to surface flow and investigate it numerically. In particular, we present a new model for the manholes in storm sewer systems. It is derived using the balance of the total energy in the complete network. The resulting system of equations contains, aside from hyperbolic conservation laws for the sewer network and algebraic relations for the coupling conditions, a system of ODEs governing the flow in the manholes. The manholes provide natural points for the interaction of the sewer system and the runoff on the urban surface modeled by shallow‐water equations. Finally, a numerical method for the coupled system is presented. In several numerical tests, we study the influence of the manhole model on the sewer system and the coupling with 2D surface flow. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
The paper is devoted to a new computational method for problems of transport in highly non-uniform media. In particular, the method is applied to the problem of anomalous contaminant transport in a field with a randomly distributed permeability, which was modelled as a stochastic advection process governed by a stochastic advection model. The stochastic advection model is used to generate different realisations of micro-dispersion parameters required for direct numerical simulations. The new numerical method combines the merits of finite-volume and finite-difference approaches and is demonstrated to be efficient and robust in several benchmark advection tests. For the stochastic advection problem considered the results of the new computational method are in a good agreement with analytical predictions available for different stochastic advection regimes.  相似文献   

17.
The fractional calculus approach in the constitutive relationship model of viscoelastic fluid is introduced. The flow near a wall suddenly set in motion is studied for a non-Newtonian viscoelastic fluid with the fractional Maxwell model. Exact solutions of velocity and stress are obtained by using the discrete inverse Laplace transform of the sequential fractional derivatives. It is found that the effect of the fractional orders in the constitutive relationship on the flow field is significant. The results show that for small times there are appreciable viscoelastic effects on the shear stress at the plate, for large times the viscoelastic effects become weak. The project supported by the National Natural Science Foundation of China (10002003), Foundation for University Key Teacher by the Ministry of Education, Research Fund for the Doctoral Program of Higher Education  相似文献   

18.
The volume of fluid (VOF) and immersed boundary (IB) methods are two popular computational techniques for multi‐fluid dynamics. To help shed light on the performance of both techniques, we present accuracy assessment, which includes interfacial geometry, detailed and global fluid flow characteristics, and computational robustness. The investigation includes the simulations of a droplet under static equilibrium as a limiting test case and a droplet rising due to gravity for Re?1000. Surface tension force models are key issues in both VOF and IB and alternative treatments are examined resulting in improved solution accuracy. A refined curvature model for VOF is also presented. With the newly developed interfacial treatments incorporated, both IB and VOF perform comparably well for the droplet dynamics under different flow parameters and fluid properties. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
To improve the numerical analysis of free surface convections and reconstruction in a three‐dimensional space, a first‐order algorithm is developed based on the volume of fluid (VOF) theory. The methodology applied to the first‐order method (FOM) is to define a first‐order surface as near to the horizontal as possible while satisfying the defined volume fraction of a cell. The developed method is compared against the donor cell method of zeroth‐order through simulation of the transitional and rotational convection of liquid spheres. Although the donor cell method shows relatively good predictions for the sphere of a large diameter, it shows poor performance of large distortions for a sphere of a relatively small diameter. However, the FOM developed in this study always shows quite satisfactory prediction results for free surface convection. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

20.
An estuarine two‐dimensional vertical finite‐element model of tidal flow has been established by laterally integrating Navier–Stokes equation. To this end, a moving grid finite‐element method has been used. An arbitrarily shaped quadrilateral element has been selected. This model has been validated by using field data from two monitoring stations at the North Passage of the Changjiang Estuary. Using this numerical model, two types of modelled results were obtained: (1) vertical distributions of tidal current velocities at the North Passage of the Changjiang Estuary; (2) longitudinal distributions of tidal current velocities at maximum flood tide, at high slack water, at maximum ebb tide and at low slack water tide at the North Passage of the Changjiang Estuary. The conclusion is that the model provides a reasonable agreement with observed data. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号