首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider infiltration into a soil that is assumed to have hydraulic conductivity of the form K = K = Kseh and water content of the form = K – r. Here h denotes capillary pressure head while Ks, , and r represent soil specific parameters. These assumptions linearize the flow equation and permit a closed form solution that displays the roles of all the parameters appearing in the hydraulic function K and . We assume Ks and r to be known. A measurement of diffusivity fixes the product of and resulting in a parameter identification problem for one parameter. We show that this parameter identification problem, in some cases, has a unique solution. We also show that, in some cases, this parameter identification problem can have multiple solutions, or no solution. In addition it is shown that solutions to the parameter identification problem can be very sensitive to small changes in the problem data.  相似文献   

2.
This paper deals with the problem of stress analysis of plates with a circular hole reinforced by flange reinforcing member. The so called flange reinforcing member here means that the reinforcing member is built up by setting shapes or bars with any section shape on both sides of the plates along the edge of the hole. Two cases of external loads are considered. In one case the external loads are stressesσX(∞)Y(∞),and τXY(∞) acting at infinite point of the plate, and in the other the external loads are linear distributed normal stresses. The procedure of solving the problems mentioned above consists of three steps. Firstly, the reinforcing member is taken out from the plates and considered to be a circular bar being solved to determine its deformation under the action of radial force q0(θ) and tangential force t0(θ) which are forces acting upon each other between reinforcing member and plate. Secondly, the displacements of plate with a circular hole under the action of q0(θ) and t0(θ) and external loads are determined. Finally, forces q0(θ) and t0(θ) are obtained by the compatibility of deformations between reinforcing member and plate. Then the internal forces and displacements of reinforcing member and plate are deduced from q0(θ) and t0(θ) obtained.  相似文献   

3.
A theoretical study is made of the flow behavior of thin Newtonian liquid films being squeezed between two flat plates. Solutions to the problem are obtained by using a numerical method, which is found to be stable for all Reynolds numbers, aspect ratios, and grid sizes tested. Particular emphasis is placed on including in the analysis the inertial terms in the Navier-Stokes equations.Comparison of results from the numerical calculation with those from Ishizawa's perturbation solution is made. For the conditions considered here, it is found that the perturbation series is divergent, and that in general one must use a numerical technique to solve this problem.Nomenclature a half of the distance, or gap, between the two plates - a 0 the value of a at time t=0 - adot da/dt - ä d2 a/dt 2 - d3 a/dt 3 - a i components of a contravariant acceleration vector - f unknown function of z 0 and t defined in (6) - f i function defined in (9) f 1=r 0 g(z 0, t) f 2= 0 f 3=f(z 0, t) - F force applied to the plates - g unknown function of z 0 and t defined in (6) - g g/z 0 - h grid dimension in the z 0 direction (see Fig. 5) - Christoffel symbol - i, j, k, l indices - k grid dimension in the t direction (see Fig. 5) - r radial coordinate direction defined in Fig. 1 - r 0 radial convected coordinate - R radius of the circular plates - t time - v r fluid velocity in the r direction - v z fluid velocity in the z direction - v fluid velocity in the direction - x i cylindrical coordinate x 1=r x2= x3=z - z vertical coordinate direction defined in Fig. 1 - z 0 vertical convected coordinate - tangential coordinate direction - 0 tangential convected coordinate - viscosity - kinematic viscosity, / - i convected coordinate 1=r0 2=0 3=z0 - density  相似文献   

4.
The problem of thermal entry heat transfer for Hartmann flow in parallel-plate channels with uniform but unequal wall temperatures considering viscous dissipation, Joule heating and axial conduction effects is approached by the eigenfunction expansion method. The series expansion coefficients for the nonorthogonal eigenfunctions are obtained by using a method for nonorthogonal series described by Kantorovich and Krylov [21]. Numerical results are obtained for the case with entrance condition parameter o=1 and open circuit condition K=1. The parametric values of Ha=0, 2, 6, 10 and Br=0, –1 are considered for Hartmann and Brinkman numbers, respectively.
Zusammenfassung Das Problem der Wärmeübertragung im thermischen Einlauf einer Hartmannströmung im ebenen Spalt mit einheitlichen, aber ungleichen Wandtemperaturen wurde unter Berücksichtigung viskoser Dissipation, Joulescher Heizung und axialer Wärmeleitung mit Hilfe einer Entwicklung nach Eigenfunktionen behandelt. Die Koeffizienten der Entwicklung für nichtorthogonale Eigenfunctionen wurde nach einer Methode für nichtorthogonale Reihen nach Kantorovicz und Krylow [21] berechnet. Numerische Ergebnisse werden für den Eintrittsparameter o=1 und die Bedingung für den offenen Stromkreis K=1 erhalten. Die Parameterwerte Ha=0, 2, 6, 10 und Br=0, –1 werden für die jeweiligen Werte der Hartmann- und der Brinckman-Zahl betrachtet.

Nomenclature a one-half of channel height - ¯B,B0 magnetic field Induction vector and magnitude of applied magnetic field - Br Brinkman number, f Um 2/(kc) - Cn,Dn coefficients in the series expansion of e, see eq. 16 - cp specific heat at constant pressure - ,E0 electric field intensity vector and component - En,On even and odd eigenfunctions - Ha Hartmann number, (/f)1/2 Bo a - h1,h2 local heat transfer coefficients at lower and upper plates - ¯J,Jy electric current density vector and component - K external loading parameter, Eo/(Bo Um) - k thermal conductivity - Nu1, Nu2 local Nusselt numbers, h1,a/k and h2a/k, respectively - P fluid pressure - Pe Peclet number, PrRe - Pr Prandtl number, Cp f/k - q1,q2 rates of heat transfer per unit area,–k(T/Z)Z=–a'–k(T/Z) Z=a respectively - Re Reynolds number, Uma/uf - T,T0,T1,T2 fluid temperature, uniform entrance temperature, uniform but different lower and upper plate temperatures, respectively - Tb,Tm bulk temperature and (T1+T2)/2 - U,Um,u axial, mean and dimensionless velocities, respectively - ¯V velocity vector - X,Z axial and transverse coordinates - x,z dimensionless coordinates - n,n even and odd eigenvalues - ,0,b dimensionless fluid, entrance and bulk temperatures, respectively - c,e,f characteristic temperature difference (T2-Tm), and dimensionless fluid temperatures, defined by eq. (10) - e,f magnetic permeability and viscosity of fluid - fluid density - electric conductivity - viscous dissipation function - (1-)/2  相似文献   

5.
On the boundary conditions at the macroscopic level   总被引:2,自引:0,他引:2  
We study the problem of the boundary conditions specified at the boundary of a porous domain in order to solve the macroscopic transfer equations obtained by means of the volume-averaging method. The analysis is limited to the case of conductive transport but the method can be extended to other cases. A numerical study enables us to illustrate the theoretical results in the case of a model porous medium. Roman Letters sf interfacial area of the s-f interface contained within the macroscopic system m2 - A sf interfacial area of the s-f interface contained within the averaging volume m2 - C p mass fraction weighted heat capacity, kcal/kg/K - d s , d f microscopic characteristic length m - g vector that maps to s, m - h vector that maps to f , m - K eff effective thermal conductivity tensor, kcal/m s K - l REV characteristic length, m - L macroscopic characteristic length, m - n fs outwardly directed unit normal vector for the f-phase at the f-s interface - n e outwardly directed unit normal vector at the dividing surface - T * macroscopic temperature field obtained by solving the macroscopic equation (3), K - V averaging volume, m3 - V s , V f volume of the considered phase within the averaging volume, m3 - volume of the macroscopic system, m3 - s , f volume of the considered phase within the volume of the macroscopic system, m3 - dividing surface, m2 Greek Letters s , f volume fraction - ratio of thermal conductivities - s , f thermal conductivities, kcal/m s K - spatial average density, kg/m3 - microscopic temperature, K - * microscopic temperature corresponding to T * , K - spatial deviation temperature K - error on the temperature due to the macroscopic boundary conditions, K - spatial average - s , f intrinsic phase average  相似文献   

6.
The flow of fluids in heterogeneous porous media is modelled by regarding the hydraulic conductivity as a stationary random space function. The flow variables, the pressure head and velocity field are random functions as well and we are interested primarily in calculating their mean values. The latter had been intensively studied in the past for flows uniform in the average. It has been shown that the average Darcy's law, which relates the mean pressure head gradient to the mean velocity, is given by a local linear relationship. As a result, the mean head and velocity satisfy the local flow equations in a fictitious homogeneous medium of effective conductivity. However, recent analysis has shown that for nonuniform flows the effective Darcy's law is determined by a nonlocal relationship of a convolution type. Hence, the average flow equations for the mean head are expressed as a linear integro-differential operator. Due to the linearity of the problem, it is useful to derive the mean head distribution for a flow by a source of unit discharge. This distribution represents a fundamental solution of the average flow equations and is called the mean Green function G d (x). The mean head G d(x) is derived here at first order in the logconductivity variance for an arbitrary correlation function (x) and for any dimensionality d of the flow. It is obtained as a product of the solution G d (0)(x) for source flow in unbounded domain of the mean conductivity K A and the correction d (x) which depends on the medium heterogeneous structure. The correction d is evaluated for a few cases of interest.Simple one-quadrature expressions of d are derived for isotropic two- and three-dimensional media. The quadratures can be calculated analytically after specifying (x) and closed form expressions are derived for exponential and Gaussian correlations. The flow toward a source in a three-dimensional heterogeneous medium of axisymmetric anisotropy is studied in detail by deriving 3 as function of the distance from the source x and of the azimuthal angle . Its dependence on x, on the particular (x) and on the anisotropy ratio is illustrated in the plane of isotropy (=0) and along the anisotropy axis ( = /2).The head factor k * is defined as a ratio of the head in the homogeneous medium to the mean head, k *=G d (0)/G d= d –1. It is shown that for isotropic conductivity and for any dimensionality of the flow the medium behaves as a one-dimensional and as an effective one close and far from the source, respectively, that is, lim x0 k *(x) = K H/K A and lim x k *(x) = K efu/K A, where K A and K H are the arithmetic and harmonic conductivity means and K efu is the effective conductivity for uniform flow. For axisymmetric heterogeneity the far-distance limit depends on the direction. Thus, in the coordinate system of (x) principal directions the limit values of k * are obtained as . These values differ from the corresponding components of the effective conductivities tensor for uniform flow for = 0 and /2, respectively. The results of the study are applied to solving the problem of the dipole well flow. The dependence of the mean head drop between the injection and production chambers on the anisotropy of the conductivity and the distance between the chambers is analyzed.  相似文献   

7.
Using approach-withdrawal (AW) as a specific instance of temperament, a theoretical model of temperament as a complex dynamic system is proposed. Developmental contextualism (Lerner, 1998) serves as a guiding theory in determining the structural components of the system and Kauffman's (1993) Boolean models of self-organization are adapted to estimate the parameter functions. In this model P(AW) = f(, ) where P(AW) is the probability density function of an approach or a withdrawal response, ( is a standardized parameter estimate of the biological sensitivity to stimulation, and is a standardized parameter estimate of the contextual response to an approach or withdrawal response. It is theorized that the functions of ( and follow a Hill function of the forms: d /dt = (2/c2 + 2) – K1 d /dt = ( 2/c2 + 2) – K2, where K1, K2, and c are system constants. This results in a double sigmoid function in which at extreme values of and the system stabilizes on a steady state of either approach or withdrawal response patterns. At intermediate parameter values the probability density functions of approach and withdrawal responses are wider. Thus, AW can be modeled as representing two basins of attraction. In addition, considerations are given to the systems sensitivity to initial conditions.  相似文献   

8.
This paper studies Lp-estimates for solutions of the nonlinear, spatially homogeneous Boltzmann equation. The molecular forces considered include inverse kth-power forces with k > 5 and angular cut-off.The main conclusions are the following. Let f be the unique solution of the Boltzmann equation with f(v,t)(1 + ¦v2¦)(s 1 + /p)/2 L1, when the initial value f 0 satisfies f 0(v) 0, f 0(v) (1 + ¦v¦2)(s 1 + /p)/2 L1, for some s1 2 + /p, and f 0(v) (1 + ¦v¦2)s/2 Lp. If s 2/p and 1 < p < , then f(v, t)(1 + ¦v¦2)(s s 1)/2 Lp, t > 0. If s >2 and 3/(1+ ) < p < , thenf(v,t) (1 + ¦v¦2)(s(s 1 + 3/p))/2 Lp, t > 0. If s >2 + 2C0/C1 and 3/(l + ) < p < , then f(v,t)(1 + ¦v¦2)s/2 Lp, t > 0. Here 1/p + 1/p = 1, x y = min (x, y), and C0, C1, 0 < 1, are positive constants related to the molecular forces under consideration; = (k – 5)/ (k – 1) for kth-power forces.Some weaker conclusions follow when 1 < p 3/ (1 + ).In the proofs some previously known L-estimates are extended. The results for Lp, 1 < p < , are based on these L-estimates coupled with nonlinear interpolation.  相似文献   

9.
The Stroh formalism for two-dimensional deformation of an anisotropic elastic material does not give the stress ij explicitly in a symmetric form. It does not give an explicit expression for the strain ij at al. Mantic and Paris [1] have recently derived an explicit symmetric representation of stress. We present here a new and elementary derivation that is more straight forward and transparent. The derivation does not require consideration of the surface traction or the normalization of the Stroh eigenvectors. The new derivation also provides an explicit symmetric representation of strain. Moreover, it allows us to deduce two of the three Barnett–Lothe tensors L, S [2] and the associated tensors L ( ), S ( ) [3], resulting in a physical interpretation of these tensors and the component ( L S )21.  相似文献   

10.
Normal forms for random diffeomorphisms   总被引:1,自引:0,他引:1  
Given a dynamical system (,, ,) and a random diffeomorphism (): d d with fixed point at x=0. The normal form problem is to construct a smooth near-identity nonlinear random coordinate transformation h() to make the random diffeomorphism ()=h()–1() h() as simple as possible, preferably linear. The linearization D(, 0)=:A() generates a matrix cocycle for which the multiplicative ergodic theorem holds, providing us with stochastic analogues of eigenvalues (Lyapunov exponents) and eigenspaces. Now the development runs pretty much parallel to the deterministic one, the difference being that the appearance of turns all problems into infinite-dimensional ones. In particular, the range of the homological operator is in general not closed, making the conceptof-normal form necessary. The stochastic versions of resonance and averaging are developed. The case of simple Lyapunov spectrum is treated in detail.  相似文献   

11.
With time domain reflectometry (TDR) two dispersive parameters, the dielectric constant, , and the electrical conductivity, can be measured. Both parameters are nonlinear functions of the volume fractions in soil. Because the volume function of water ( w) can change widely in the same soil, empirical equations have been derived to describe these relations. In this paper, a theoretical model is proposed based upon the theory of dispersive behaviour. This is compared with the empirical equations. The agreement between the empirical and theoretical aproaches was highly significant: the ( w) relation of Topp et al. had a coefficient of determination r 2 = 0.996 and the (u) relation of Smith and Tice, for the unfrozen water content, u, at temperatures below 0°C, had an r 2 = 0.997. To obtain ( w) relations, calibration measurements were performed on two soils: Caledon sand and Guelph silt loam. For both soils, an r 2 = 0.983 was obtained between the theoretical model and the measured values. The correct relations are especially important at low water contents, where the interaction between water molecules and soil particles is strong.  相似文献   

12.
In this paper, we show that the maximum principle holds for quasilinear elliptic equations with quadratic growth under general structure conditions.Two typical particular cases of our results are the following. On one hand, we prove that the equation (1) {ie77-01} where {ie77-02} and {ie77-03} satisfies the maximum principle for solutions in H 1()L(), i.e., that two solutions u 1, u 2H1() L() of (1) such that u 1u2 on , satisfy u 1u2 in . This implies in particular the uniqueness of the solution of (1) in H 0 1 ()L().On the other hand, we prove that the equation (2) {ie77-04} where fH–1() and g(u)>0, g(0)=0, satisfies the maximum principle for solutions uH1() such that g(u)¦Du|{2L1(). Again this implies the uniqueness of the solution of (2) in the class uH 0 1 () with g(u)¦Du|{2L1().In both cases, the method of proof consists in making a certain change of function u=(v) in equation (1) or (2), and in proving that the transformed equation, which is of the form (3) {ie77-05}satisfies a certain structure condition, which using ((v1 -v 2)+)n for some n>0 as a test function, allows us to prove the maximum principle.  相似文献   

13.
By definition, a homogeneous isotropic compressible Hadamard material has the property that an infinitesimal longitudinal homogeneous plane wave may propagate in every direction when the material is maintained in a state of arbitrary finite static homogeneous deformation. Here, as regards the wave, homogeneous means that the direction of propagation of the wave is parallel to the direction of eventual attenuation; and longitudinal means that the wave is linearly polarized in a direction parallel to the direction of propagation. In other words, the displacement is of the form u = ncos k(n · xct), where n is a real vector. It is seen that the Hadamard material is the most general one for which a longitudinal inhomogeneous plane wave may also propagate in any direction of a predeformed body. Here, inhomogeneous means that the wave is attenuated, in a direction distinct from the direction of propagation; and longitudinal means that the wave is elliptically polarized in the plane containing these two directions, and that the ellipse of polarization is similar and similarly situated to the ellipse for which the real and imaginary parts of the complex wave vector are conjugate semi-diameters. In other words, the displacement is of the form u = {S exp i(S · xct)}, where S is a complex vector (or bivector). Then a Generalized Hadamard material is introduced. It is the most general homogeneous isotropic compressible material which allows the propagation of infinitesimal longitudinal inhomogeneous plane circularly polarized waves for all choices of the isotropic directional bivector. Finally, the most general forms of response functions are found for homogeneously deformed isotropic elastic materials in which longitudinal inhomogeneous plane waves may propagate with a circular polarization in each of the two planes of central circular section of the n -ellipsoid, where is the left Cauchy-Green strain tensor corresponding to the primary pure homogeneous deformation.  相似文献   

14.
In the present paper an attempt has been made to find out effects of uniform high suction in the presence of a transverse magnetic field, on the motion near a stationary plate when the fluid at a large distance above it rotates with a constant angular velocity. Series solutions for velocity components, displacement thickness and momentum thickness are obtained in the descending powers of the suction parameter a. The solutions obtained are valid for small values of the non-dimensional magnetic parameter m (= 4 e 2 H 0 2 /) and large values of a (a2).Nomenclature a suction parameter - E electric field - E r , E , E z radial, azimuthal and axial components of electric field - F, G, H reduced radial, azimuthal and axial velocity components - H magnetic field - H r , H , H z radial, azimuthal and axial components of magnetic field - H 0 uniform magnetic field - H* displacement thickness and momentum thickness ratio, */ - h induced magnetic field - h r , h , h z radial, azimuthal and axial components of induced magnetic field - J current density - m nondimensional magnetic parameter - p pressure - P reduced pressure - R Reynolds number - U 0 representative velocity - V velocity - V r , V , V z radial, azimuthal and axial velocity components - w 0 uniform suction through the disc. - density - electrical conductivity - kinematic viscosity - e magnetic permeability - a parameter, (/)1/2 z - a parameter, a - * displacement thickness - momentum thickness - angular velocity  相似文献   

15.
The injection moulding of thermoplastic polymers involves, during mould filling, flows of hot melts into mould networks, the walls of which are so cold that frozen layers form on them. Theoretical analyses of such flows are presented here. Br Brinkman number - c L polymer melt specific heat capacity - c S frozen polymer specific heat capacity - e exponential function - erf() error function - Gz Graetz number in thermal entrance region - Gz * modified Graetz number in thermal entrance region - Gz overall Graetz number - h channel half-height - h * half-height of polymer melt region - H mean heat transfer coefficient - k L polymer melt thermal conductivity - k S frozen polymer thermal conductivity - ln( ) natural logarithm function - L length of thermal entrance region in pipe or channel - m viscosity shear rate exponent - M(,,) Kummer function - Nu Nusselt number - p pressure - P pressure drop in thermal entrance region - P f pressure drop in melt front region - Pe Péclet number - Pr Prandtl number - Q volumetric flow rate - r radial coordinate in pipe - R pipe radius - R * radius of polymer melt region - Re Reynolds number - Sf Stefan number - t time - T temperature - T i inlet polymer melt temperature - T m melting temperature of polymer - T w pipe or channel wall temperature - U(,,) Kummer function - u r radial velocity in pipe - u x axial velocity in channel - u y cross-channel velocity - u z axial velocity in pipe - V melt front velocity - w channel width - x axial coordinate in channel - x f melt front position in channel - y cross-channel coordinate - z axial coordinate in pipe - z f melt front position in pipe - () gamma function - dimensionless thickness of frozen polymer layer - i i-th term (i = 1,2,3) in power series expansion of - dimensionless axial coordinate in pipe - f dimensionless melt front position in pipe - dimensionless cross-channel coordinate - * dimensionless half-height of polymer melt region - dimensionless temperature - i i-th term (i = 0, 1, 2, 3) in power series expansion of - i first derivative of i with respect toø - i second derivative of i with respect toø - * dimensionless wall temperature - thermal diffusivity ratio - - latent heat of fusion - µ viscosity - µ * unit shear rate viscosity - dimensionless axial coordinate in channel - f dimensionless melt front position in channel - dimensionless pressure drop in thermal entrance region - f dimensionless pressure drop in melt front region - L polymer melt density - s frozen polymer density - dimensionless radial coordinate in pipe - * dimensionless radius of polymer melt region - ø dimensionless similarity variable in thermal entrance region - dummy variable - dimensionless contracted axial coordinate in thermal entrance region - dimensionless similarity variable in melt front region - * constant  相似文献   

16.
A perturbation analysis is presented for periodic heat transfer in radiating fins of uniform thickness. The base temperature is assumed to oscillate around a mean value. The perturbation expansion is carried out in terms of dimensionless amplitude of the base temperature oscillation. The zero-order problem which is nonlinear, and corresponds to the steady state fin behaviour, is solved by quasilinearization. A method of complex combination is used to reduce both the first and the second order problems to two, coupled linear boundary value problems which are subsequently solved by a noniterative numerical scheme. The second-order term is composed of an oscillatory component with twice the frequency of base temperature oscillation and a time-independent term which causes a net change in the steady state values of temperature and heat transfer rate. Within the range of parameters used, the net effect is to decrease the mean temperature and increase the mean heat transfer rate. This is in constrast to the linear case of convecting fins where the mean values are unaffected by base temperature oscillations. Detailed numerical results are presented illustrating the effects of fin parameter N and dimensionless frequency B on temperature distribution, heat transfer rate, and time-average fin efficiency. The time-average fin efficiency is found to reduce significantly at low N and high B.
Störungsanalyse für periodische Wärmeübertragung an Strahlungsrippen
Zusammenfassung Eine Störungsanalyse wird für periodische Wärmeübertragung in Strahlungsrippen gleicher Dicke vorgelegt. Die Fußtemperatur wird als um einen Mittelwert schwingend angenommen. Die Störungsentwicklung wird in Termen einer dimensionslosen Amplitude e dieser Schwingung angesetzt. Das Problem nullter Ordnung, das nichtlinear ist und dem stationären Verhalten der Rippe entspricht, wird durch Quasilinearisierung gelöst. Eine Methode der komplexen Kombination wird angewandt, um die Probleme erster und zweiter Ordnung auf zwei gekoppelte Grenzwertprobleme zu reduzieren, die nacheinander nach einem nichtiterativen Schema gelöst werden. Der Term zweiter Ordnung besteht aus einer Schwingungskomponente mit der doppelten Frequenz der Schwingung der Fußtemperatur und einem zeitunabhängigen Term, der eine Nettoänderung der stationären Werte der Temperatur und der Wärmeübertragung verursacht. Im verwendeten Bereich der Parameter tritt eine Abnahme der mittleren Temperatur und eine Zunahme der mittleren Wärmeübertragung auf. Das steht im Gegensatz zum linearen Fall der Konvektionsrippe, bei dem die Mittelwerte durch Schwingungen der Fußtemperatur nicht beeinflußt werden. Detaillierte numerische Ergebnisse zeigen die Einflüsse des Rippenparameters N und der dimensionslosen Frequenz B auf Temperatur Verteilung, Wärmeübertragung und zeitliches Mittel des Rippengütegrades. Dieses zeitliche Mittel nimmt merklich ab bei kleinem N und hohem B.

Nomenclature b fin thickness - B dimensionless frequency, L2/ - E emissivity - f0, f1 functions of X - g0, g1, g2 functions of X - h0, h1, h2 functions of X - k thermal conductivity - L fin Length - N fin parameter, 2EL2Tbm/bk - q heat transfer rate - Q dimensionless heat transfer rate, qL/kbTbm - t time - T temperature - Tb fin base temperature - TS effective sink temperature - Tbm mean fin base temperature - x axial distance - X dimensionless axial distance, x/L - dimensionless amplitude of base temperature (s. Eq.2) - thermal diffusivity - instantaneous fin efficiency - time-average fin efficiency - ss steady state fin efficiency - dimensionless temperature, T/Tbm - 0 zero-order approximation - 1 first-order approximation - 2 second-order approximation - 2s steady component of 2 - , 1, 2 constants - complex function of X - 1 real part of - 2 imaginary part of - complex function of X - 1 real part of Y - 2 imaginary part of - dimensionless time, t/L2 - frequency of base temperature oscillation  相似文献   

17.
For a smooth, bounded domain R, n 3, and a real, positive parameter, we consider the hyperbolic equationu tt +u t u=–f(u)g in with Dirichlet boundary conditions. Under certain conditions onf, this equation has a global attractorA inH 0 1 () ×L 2(). For=0, the parabolic equation also has a global attractor which can be naturally embedded into a compact setA 0 inH 0 1 () ×L 2(). If all of the equilibrium points of the parabolic equation are hyperbolic, it is shown that the setsA are lower semicontinuous at=0. Moreover, we give an estimate of the symmetric distance betweenA 0 andA .  相似文献   

18.
Summary The problem of heat transfer in a two-dimensional porous channel has been discussed by Terrill [6] for small suction at the walls. In [6] the heat transfer problem of a discontinuous change in wall temperature was solved. In the present paper the solution of Terrill for small suction at the walls is revised and the whole problem is extended to the cases of large suction and large injection at the walls. It is found that, for all values of the Reynolds number R, the limiting Nusselt number Nu increases with increasing R.Nomenclature stream function - 2h channel width - x, y distances measured parallel and perpendicular to the channel walls respectively - U velocity of fluid at x=0 - V constant velocity of fluid at the wall - =y/h nondimensional distance perpendicular to the channel walls - f() function defined in equation (1) - coefficient of kinematic viscosity - R=Vh/ suction Reynolds number - density of fluid - C p specific heat at constant pressure - K thermal conductivity - T temperature - x=x 0 position where temperature of walls changes - T 0, T 1 temperature of walls for x<x 0, x>x 0 respectively - = (TT 1)/T 0T 1) nondimensional temperature - =x/h nondimensional distance along channel - R * = Uh/v channel Reynolds number - Pr = C p/K Prandtl number - n eigenvalues - B n() eigenfunctions - B n (0) , () eigenfunctions for R=0 - B 0 (i) , B 0 (ii) ... change in eigenfunctions when R0 and small - K n constants given by equation (13) - h heat transfer coefficient - Nu Nusselt number - m mean temperature - C n constants given by equation (18) - perturbation parameter - B 0i () perturbation approximations to B 0() - Q = B 0/ 0 derivative of eigenfunction with respect to eigenvalue - z nondimensional distance perpendicular to the channel walls - F(z) function defined by (54)  相似文献   

19.
Flooding oil reservoirs with surfactant solutions can increase the amount of oil that can be recovered. Macroscopic modelling of the process requires relative permeabilities to be functions of saturation and capillary number. With only limited experimental data, relative permeabilities have usually been assumed to be linear functions of saturation at high capillary numbers. The experimental data is reviewed, some of which suggest that this assumption is not necessarily correct. The basis for the assumption is therefore reviewed and it is concluded that the linear model corresponds to microscopically segregated flow in the porous medium. Based on new but equally plausible complementary assumptions about the flow pattern, a mixed flow model is derived. These models are then shown to be limiting cases of a droplet model which represents the mixing scale within the porous medium and gives a physical basis for interpolating between the models. The models are based on physical concepts of flow in a porous medium and so the approach described here represents a significant improvement in the understanding of high capillary number flow. This is shown by the fact that fewer parameters are needed to describe experimental data.Notation A total cross-sectional area assigned to capillary bundle - A (i) physical cross-sectional area of tube i - c (i) ordered configurational label for droplets in tube i - c configuration label for tube i (order not considered) - D defined by Equation (26) - E(...) expectation value with respect to the trinomial distribution - S r () fractional flow of phase - k absolute permeability - k r relative permeability of phase - k r 0 endpoint relative permeability of phase - L capillary tube length in bundle model - m (i) number of droplets of phase a occupying tube i - n exponent for phase a in Equation (2) - N number of droplets in bundle model - N c capillary number - p pressure - p(c') probability of configuration c - Q (i) total volume flow rate in tube i - S saturation of phase - S flowing saturation of phase - S r residual saturation of phase - S r () saturations when fractional flow of phase is 1 in the case of varying residual saturations for three-phase flow ( ) - t c residence time for droplet configuration c - v (i) total fluid velocity in bundle tube i - , phase label - p pressure differential across capillary bundle - (i) tube conductivity defined by Equation (7) - viscosity of phase - interfacial tension - gradient operator - ... average over tube droplet configurations  相似文献   

20.
A study is made of the steady flow of an incompressible ideal fluid past a rectangular wing of infinite aspect ratio that has a protrusion on its leading edge. The protrusion is a triangular plate of small aspect ratio. It is assumed that flow separation occurs only from the side edges of the protrusion. An asymptotic solution to the problem is found for = O(), = o(1), where is the half-angle at the tip of the protrusion, and is the angle of attack. The results of numerical calculations are given.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 65–72, May–June, 1982.We are sincerely grateful to G. P. Svishchev for posing the problem and for interest in the work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号