首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
扩展有限元法(XFEM)及其应用   总被引:43,自引:3,他引:43  
扩展有限元法(extended finite element method, XFEM)是1999年提出的一种求解不连续力学问题的数值方法, 它继承了常规有限元法(CFEM) 的所有优点, 在模拟界面、裂纹生长、复杂流体等不连续问题时特别有效, 短短几年间得到 了快速发展与应用. XFEM与CFEM的最根本区别在于, 它所使用的网格与结构内部的几何或 物理界面无关, 从而克服了在诸如裂纹尖端等高应力和变形集中区进行高密度网格剖分所带 来的困难, 模拟裂纹生长时也无需对网格进行重新剖分. 重点介绍XFEM的基本原理、 实施步骤及应用实例等, 并进行必要的评述. 单位分解概念保证了XFEM的收敛, 基于此, XFEM 通过改进单元的形状函数使之包含问题不连续性的基本成分, 从而放松对网格密度的过分要 求. 水平集法是XFEM中常用的确定内部界面位置和跟踪其生长的数值技术, 任何内部界面 可用它的零水平集函数表示. 第2和第3节分别简要介绍单位分解法和水平集法; 第4节和第5节介绍XFEM的基本思想、详细实施步骤和若干应用实例, 同时修正了以往文 献中的一些不妥之处; 最后, 初步展望了该领域尚需进一步研究的课题.  相似文献   

2.
A hybrid approach to couple finite difference method (FDM) with finite particle method (FPM) (ie, FDM-FPM) is developed to simulate viscous incompressible flows. FDM is a grid-based method that is convenient for implementing multiple or adaptive resolutions and is computationally efficient. FPM is an improved smoothed particle hydrodynamics (SPH), which is widely used in modeling fluid flows with free surfaces and complex boundaries. The proposed FDM-FPM leverages their advantages and is appealing in modeling viscous incompressible flows to balance accuracy and efficiency. In order to exchange the interface information between FDM and FPM for achieving consistency, stability, and convergence, a transition region is created in the particle region to maintain the stability of the interface between two methods. The mass flux algorithm is defined to control the particle creation and deletion. The mass is updated by N-S equations instead of the interpolation. In order to allow information exchange, an overlapping zone is defined near the interface. The information of overlapping zone is obtained by an FPM-type interpolation. Taylor-Green vortices and lid-driven shear cavity flows are simulated to test the accuracy and the conservation of the FDM-FPM hybrid approach. The standing waves and flows around NACA airfoils are further simulated to test the ability to deal with free surfaces and complex boundaries. The results show that FDM-FPM retains not only the high efficiency of FDM with multiple resolutions but also the ability of FPM in modeling free surfaces and complex boundaries.  相似文献   

3.
The oscillation property (OP) is a fundamental and important qualitative property for the vibrations of single span one-dimensional continuums such as strings, bars, torsion bars, and Euler beams. Any properly discretized continuum model should keep the OP. In literatures, the OP of discrete beam models is discussed essentially by means of matrix factorization. The discussion is model-specific and boundary-condition- specific. Besides, matrix factorization is difficult in handling finite element (FE) models of beams. In this paper, according to a sufficient condition for the OP, a new approach to discuss the property is proposed. The local criteria on discrete displacements rather than global matrix factorizations are given to verify the OP. Based on the proposed approach, known results such as the OP for the 2-node FE beams via the Heilinger- Reissener principle (HR-FE beams) as well as the 5-point finite difference (FD) beams are verified. New results on the OP for the 2-node PE-FE beams and the FE Timoshenko beams with small slenderness are given. Through a simple manipulation, the qualitative property of discrete multibearing beams can also be discussed by the proposed approach.  相似文献   

4.
波动数值模拟的一种显式方法——二维波动   总被引:1,自引:0,他引:1  
刘恒  廖振鹏 《力学学报》2010,42(6):1104
将一维波动时域数值模拟的一种显式方法推广到二维,导出了二维非规则网格的节点递推公式.针对均匀正方形网格详细论述了时空精度皆为2M阶(M为正整数)的稳定递推公式的构建方法,并以构建二阶(M=1)和四阶(M=2)公式为例予以说明.最后,通过算例检验了本文研究结果,特别是说明了高阶公式对提高计算效率的价值.  相似文献   

5.
The smoothed finite element method (SFEM), which was recently introduced for solving the mechanics and acoustic problems, uses the gradient smoothing technique to operate over the cell‐based smoothing domains. On the basis of the previous work, this paper reports a detailed analysis on the numerical dispersion error in solving two‐dimensional acoustic problems governed by the Helmholtz equation using the SFEM, in comparison with the standard finite element method. Owing to the proper softening effects provided naturally by the cell‐based gradient smoothing operations, the SFEM model behaves much softer than the standard finite element method model. Therefore, the SFEM can significantly reduce the dispersion error in the numerical solution. Results of both theoretical and numerical experiments will support these important findings. It is shown clearly that the SFEM suits ideally well for solving acoustic problems, because of the crucial effectiveness in reducing the dispersion error. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
By coupling natural boundary element method (NBEM) with FEM based on domain decomposition, the torsion problem of the square cross-sections bar with cracks have been studied, the stresses of the nodes of the cross-sections and the stress intensity factors have been calculated, and some distribution pictures of the stresses have been drawn. During computing, the effect of the relaxed factors to the convergence speed of the iterative method has been discussed. The results of the computation have confirmed the advantages of the NBEM and its coupling with the FEM. Foundation item: the State Key Laboratory of Science and Engineering Computation Biography: ZHAO Hui-ming (1971-)  相似文献   

7.
Phononic crystals(PCs) have recently been developed as effective components for vibration suppression and sound absorption. As a typical design of PCs, wave attenuation occurs in the so-called stop-band. However, the structural response is still significantly large in the pass-band. In this paper, we combine PCs and acoustic black holes(ABHs) in a unique device, achieving a versatile device that can attenuate vibration in the stop-band, while suppress vibration in the pass-band. This approach provides a versatile platform for controlling vibration in a multiband with a simple design.  相似文献   

8.
For vibration analysis of beams fully treated with active constrained layer damping (ACLD), a new approach called spectral strip-element method (SSEM) based on the spectral finite element method (SFEM) is proposed. It can avoid difficulties in solving the characteristic equation with higher orders and unknown parameters for wave numbers when using the SFEM; simultaneously, advantages of a very few elements and high accuracy of the SFEM are kept. A numerical example shows that the proposed method is very effective and reliable, compared with the exact solutions resulted from the spectral transfer matrix method (STMM).  相似文献   

9.
针对铁路道床有砟-无砟过渡段的结构特点,采用离散元-有限元耦合模型分析散体道砟和无砟道床间过渡段的动力特性。散体道砟道床和无砟道床分别采用离散元方法 DEM和有限元方法 FEM模拟,而在过渡段将道砟颗粒嵌入无砟道床以增加道砟颗粒与无砟道床间的咬合力,并在离散元和有限元耦合区域实现了力学参数的传递。采用以上DEM-FEM耦合方法对有砟-无砟道床及其过渡段在列车荷载作用下的沉降过程进行了数值分析。计算结果表明,离散元方法中道砟颗粒间的力链呈现非对称梯形分布,其与有限元方法中的应力分布趋势一致;采用嵌入式道砟颗粒的方法可以增加有砟-无砟过渡段道砟间的咬合力,有效约束道砟颗粒的位移,减少有砟-无砟道床间的沉降差异。本文计算模型可以合理地分析有砟道床的力链分布以及无砟道床的应力分布,确定列车荷载下道床有砟-无砟过渡段的动力学行为。  相似文献   

10.
The finite cell method (FCM) combines the high-order finite element method (FEM) with the fictitious domain approach for the purpose of simple meshing. In the present study, the FCM is used to the Prandtl-Reuss flow theory of plasticity, and the results are compared with the h-version finite element method (h-FEM). The numerical results show that the FCM is more efficient compared to the h-FEM for elasto-plastic problems, although the mesh does not conform to the boundary. It is also demonstrated that the FCM performs well for elasto-plastic loading and unloading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号