首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mixed-mode, elastodynamic state of stress in the neighborhood of a constant-velocity crack tip is used to generate numerically unsymmetric isochromatics. Unsymmetry associated with the third-order terms of a mixed-mode stress field, with and without the Mode II singular stress term, is also investigated. In extractingK I from an unsymmetric isochromatic pattern, errors in the Mode I fracture parameters due to the assumed presence ofK II in aK I stress field were found to be significant when data are taken more than 4 mm from the crack tip. Paper was presented at V International Congress on Experimental Mechanics held in Montreal, Quebec, Canada on June 10–15, 1984.  相似文献   

2.
Two models are compared. One is based on the theory of elastic continua, and describes the interaction between filler and matrix in terms of an interfacial layer of varying volume fraction and elastic properties. The other derives from an equation of state for the constituents and the composite, based on molecular considerations. The filler-matrix interaction is then expressed in terms of segmental attractions and repulsions. We examine the dependence of the bulk modulusK c ( f ) on the volume fraction f of filler and then show the correspondence between the two theories in terms of the infinite dilution limit of the ratio [K c ( f ) –K m ]/(K m f ) where the indexm refers to the matrix.Dedicated to Prof. Dr. F. R. Schwarzl on the occasion of his 60th birthdayOn leave from Rajdhani College, University of Delhi, India  相似文献   

3.
An error analysis of the use of photoelasticity in the study of fracture problems is attempted. In particular, it was desired to determine the optimum regions of data collection and to ascertain the sensitivity of the extractedK 1 andK 2 values to errors in such parameters as crack-tip position and fringe location. Experiments were performed on both Mode 1 and Mixed Mode cases and the results compared with the error analysis  相似文献   

4.
A linear elastic three-dimensional finite element analysis is made to analyze the near field stress behavior of an edge cracked rectangular bar simply supported and subjected to central impact at the back side of the crack. The material is made of 40 Cr steel. Determined numerically are the local time histories of the stress wave, displacement near load point, crack tip strain, and dynamic stress intensity factor K(d)1. The above quantities were also measured experimentally by performing impact tests; they agreed well with the analytical results and determine the load at fracture initiation and hence the critical dynamic stress intensity factor K(d)1c. The interaction effect between the loading bar and specimen appears to be negligible.  相似文献   

5.
This paper comments on some of the different numerical techniques commonly employed in evaluating Cauchy singular integrals of the first kind; e.g. as pertaining to 2D through cracks in a brittle material undergoing Mode I loading. In addition, a different more direct method is proposed here. Also, two different ways to calculate the stress intensity factor (KI) are contrasted. The accuracy attained by the different methods in calculating KI, and the factors affecting the calculation, are compared. Finally, comments on calculating the stress field of a 2D crack and important considerations are presented.  相似文献   

6.
Using the technique of Dimensional Analysis the phenomenon of crack closure is modelled using the concept of a contact stress intensity factor Kc. For constant amplitude loading, a simple expression, Kcmax = g(R) ΔK, is obtained without making idealized assumptions concerning crack tip behaviour. Further, by assuming that crack closure arises from the interaction of residual plasticity in the wake of the crack and crack tip compressive stresses, the function g(R) is shown to be constant for non-workhardening materials. This implies that any dependency of Kcmax on R must be attributed to the workhardening characteristic of the material. With Kc known, an “effective” stress intensity factor Ke may be calculated and incorporated into a crack growth law of the form da/dn = f(ΔKe). From analysis, it can be deduced that for a workhardening material, Kcmax will decrease as R increases and the effective stress intensity factor will increase. This means that the fatigue crack propagation rate will increase with R, in accordance with experimental observations.  相似文献   

7.
Stress intensity factors (SIFs) were obtained for an oblique crack under normal and shear traction and remote extension loads. The oblique crack was modeled as the pseudodislocation. The stress field due to tractions was solved by the Flamant solution. The SIR of Mode I and Mode II (KIand KII) were then obtained. Finite element analysis was performed with ABAQUS and compared with the analytical solutions. The analytical solutions were in good agreement with the results of FEM. From investigating SIFs and their ranges, the following results were obtained. The growth rate of an oblique edge crack decreased due to the reduction in the SIF ranges. The crack driving force depended on the obliquity, the normal traction and the ratio of crack to traction length. The peak value of shear traction was found as a key parameter to accelerate the crack growth.  相似文献   

8.
This work aimed at improving fine-scale measurements using cold-wire anemometry. The dissipation ɛ θ of the temperature variance was measured on the axis of a heated turbulent round jet. The measurements were performed with a constant current anemometer (CCA) operating fine Pt–10%Rh wires at very low overheat. The CCA developed for this purpose allowed the use of the current injection method in order to estimate the time constant of the wire. In the first part of the paper, it is shown that the time constants obtained for two wire diameters −d=1.2 and d=0.58 μm – compare well with those measured at the same time using two other methods (laser excitation and pulsed wire). Moreover, for these two wires, the estimated time constants were in good agreement with those obtained from a semi-empirical relation. In the second part of the paper, a compensation procedure – post-processing filtering – was developed in order to improved the frequency response of the cold-wire probes. The measurements carried out on the axis of the jet (Re D =16 500, Re λ ≃ 167) showed that the frequency response of the 1.2 μm wire was significantly improved. In fact, the spectral characteristics of the compensated signal obtained with the 1.2 μm wire compared fairly well with those from the 0.58 μm wire. Moreover, the results indicated that the compensation procedure must be applied when the cut-off frequency of the cold-wire f c is lower than two times the Kolmogorov frequency f K. In the case where f c ≃ 0.6f K, the compensation procedure can reduce the error in the estimate of ɛ θ by more than 20%. When f c ≃ 2f K, the effect of the compensation is reduced to about 5%. Received: 3 November 2000/Accepted: 23 March 2001  相似文献   

9.
The Volterra-Wiener functional expansion is employed to the analysis of statistic properties for random heterogeneous solids. For simplicity, the technique is displayed on an elastic suspension of spheres. The basis function in the expansion is chosen as that corresponding to the so-called “perfect disorder” of spheres (PDS), recently introduced by the authors. An infinite hierarchy of equations for the kernels in the expansion is derived whose truncating after the nth equation is shown to yield results for the averaged statistical characteristics which are valid to order cnf, where cf is the volume fraction of the spheres. The kernels for the first and the second approximations, n = 1, 2, are found and related to the displacement fields in an infinite elastic body containing, respectively, one and two spherical inhomogeneities. Within the frame of the so-called singular approximation the overall tensor of elastic moduli for a suspension of perfectly disordered spheres is shown to coincide to the order c2f with a formula, earlier obtained by means of the method of the effective field.  相似文献   

10.
The character of the local stresses and displacements are determined for a through crack with finite radius of curvature in a finite thickness plate. Numerical results obtained from the boundary element method show that the solutions are sufficiently accurate for /a ≤ 0.03 and 0.03 ≤ /a ≤ 0.1, where and a represent, respectively, the crack front radius of curvature and crack dimension such that a is the width of a through thickness crack and the depth of a part-through crack. For /a ≤ 0.1, the asymptotic singular stress field dominates such that the Mode I stress intensity factor K1 can be evaluated. As the crack border radius of curvature is increased for /a ≥ 0.1, the non-singular terms become significant such that KI would no longer dominate. Other failure criteria would have to be invoked to address fracture initiation.  相似文献   

11.
Defects or cracks in the shank of bolts can degrade their load carrying capacity. The ways with which loading and residual stress intensify the crack border stress field can be reflected through the stress intensity factor quantity as defined in the linear elastic fracture mechanics theory. Use is made of the stiffness derivative method where quarter-point singular finite elements are used in the numerical calculation. Improved accuracy is achieved by considering the displacements not only of the main nodes but also of those quarter-point nodes in plane normal and adjacent to the crack.Numerical results are obtained for a semi-elliptical shaped crack in the bolt shank owing to tension, bending, residual stress and stress caused by tightening of the bolt. Maximum value of the Mode I stress intensity factor Ka due to tension or bending could prevail either at the deepest point on the crack border or at the root of the shank where the crack border terminates depending on the aspect ratio of the ellipse. In general, K1 at the deepest point of crack penetration is larger than that at the free surface for tension and bending for a fixed crack depth with reference to the bolt diameter. Tightening of the bolt tends to increase K1 at the free surface if the crack depth is small. The opposite is obtained for deeper cracks. Assumed residual stress effect obtained from experimental data is found to have negligible influence on the stress intensity factor when compared with that arising from tensile load.  相似文献   

12.
We consider the onset of convection in a porous medium heated from below and subjected to a horizontal mean flow. The effect of porous inertia is studied, and the transverse aspect ratio a of the medium is taken into accout. We find that the dominant modes are longitudinal rolls (L.R) if a is an integer or transverse traveling rolls (T.R) if a is below ac with ac<1. When a is not an integer with a>ac, the setting on patterns are oscillatory three-dimensional structures (3D) for a>1 or T.R for ac<a<1 provided that the Reynolds number remains below a critical value ReK*. We show that these structures are replaced by L.R if ReK>ReK*. To cite this article: A. Delache et al., C. R. Mecanique 330 (2002) 885–891.  相似文献   

13.
An analysis is presented which relates the critical value of tensile stress (σf) for unstable cleavage fracture to the fracture toughness (KIc) for a high-nitrogen mild steel under plane strain conditions. The correlation is based on (i) the model for cleavage cracking developed by E. Smith and (ii) accurate plastic-elastic solutions for the stress distributions ahead of a sharp crack derived by J. R. Rice and co-workers. Unstable fracture is found to be consistent with the attainment of a stress intensification close to the tip such that the maximum principal stress σyy exceeds σf over a characteristic distance, determined as twice the grain size. The model is seen to predict the experimentally determined variation of KIc with temperature over the range -150 to -75°C from a knowledge of the yield stress and hardening properties. It is further shown that the onset of fibrous fracture ahead of the tip can be deduced from the position of the maximum achievable stress intensification. The relationship between the model for fracture ahead of a sharp crack, and that ahead of a rounded notch, is discussed in detail.  相似文献   

14.
Fatigue crack growth studies in rail steels and associated weld metal have shown that (a) deformed rail steel exhibited fatigue crack growth rates that are slightly faster than undeformed rail steel and (b) weld metal growth data are appreciably faster than rail steel growth results and exhibit growth rate plateaux that reside above the upper bound reported for rail steel fatigue crack growth.In rail steel microstructures at low ΔK levels fatigue crack extension occurred by a ductile striated growth mechanism. However at Kmax values approaching 40 MPa √m transgranular cleavage facets initially formed and their incidence increased with Kmax until final fast fracture. The average cleavage facet size agreed well with pearlite nodule dimensions of 60–100 μm.The weld metal microstructure was much coarser than the rail steel and contained highly directional columnar grain growth. At all ΔK levels the dominant fracture mode was transgranular cleavage containing small isolated regions of ductile striated fatigue crack growth. The cleavage facet size varied from 150 to 600 μm; such a large variation was explained by the fact that in general crack extension tended to occur in association with the proeutectoid ferrite phase.  相似文献   

15.
Turbine-generator shafts are often subjected to a complex transient torsional loading. Such a torsional loading may initiate yielding at the outer radius of the shaft or in the fillets. The methods for predicting turbine-shaft fatigue life due to transient loading depent upon the mode of crack growth from an undetected crack. The most common location for the existence of a crack is the fillets or shoulders of the shaft. Specimens were designed from AISI 4340 steel with two diametrically opposed flat surfaces. Initial defect orientations of 0 deg, 45 deg and 90 deg with respect to the sepcimen axis on the fillet were studied. The specimens were subjected to cyclic torsion with zero mean torque and with a torque amplitude necessary to cause yielding at the outer radius of the specimen. When initial defects were aligned with a plane of maximum shear stress (0 deg and 90 deg), the cracks propagated along that plane. For 45-deg defects (aligned to a plane of maximum tensile stress) the crack still propagated along the plane of maximum shear. However, the number of cycles to initiate and to propagate the crack to failure for 45-deg defects were (two to three times) larger than those for 0-deg and 90-deg defects. Mode II and Mode III crack-growth rates were measured from specimens containing 0-deg and 90-deg defects. It was found that the crack-growth rate in Mode II was higher than in Mode III. However, all the specimens failed due to reduction of the net cross section, mostly attributed to Mode III crack growth. Similar results were obtained from specimens of turbine-shaft material (A469 steel), and 2024 aluminum with different rolling directions. Fatigue-crack-growth rates in Mode III were measured from circumferentially notched bar. They were found to be a unique function of ΔK III alternating stress intensity in Mode III. It was found that the mechanism of crack growth is produced by the formation and linkage of elongated cavities at the crack tip.  相似文献   

16.
Dynamic fracture toughness at initiationK 1d and fracture toughness at arrestK 1a were measured on two pipeline steel grades. Dynamic fracture toughness was measured at a very high loading rate with the help of split Hopkinson pressure bars. The values ofK 1d andK 1a are compared. The purpose of this work is to examine the possibilities of using dynamic fracture toughness at crack initiation as a lower bound of crack arrest toughness. This work has practical applications because crack arrest tests are difficult to perform, give scattered results and are costly and time consuming. This procedure shows that it is possible to economize and rationalize using intelligent technology.  相似文献   

17.
Complex potentials are derived to describe the anti-plane singular shear stress fields around a kinked crack, the main portion of which is embedded along the interface of two dissimilar anisotropic elastic media. This is accomplished by formulating the problem as singular integral equations with generalized Cauchy kernels. The shear stress singularity at the kink differs from the familiar inverse square root of the local distance; it is found to influence the magnitude of the Mode III crack tip stress intensity factor, K3. Numerical results of K3 are obtained and displayed in graphical forms for different degree of material anisotropy and crack dimensions.  相似文献   

18.
The search for traveling wave solutions of a semilinear diffusion partial differential equation can be reduced to the search for heteroclinic solutions of the ordinary differential equation ü − cu̇f(u) = 0, where c is a positive constant and f is a nonlinear function. A heteroclinic orbit is a solution u(t) such that u(t) → γ 1 as t → −∞ and u(t) → γ 2 as t → ∞ where γ 1γ 2 are zeros of f. We study the existence of heteroclinic orbits under various assumptions on the nonlinear function f and their bifurcations as c is varied. Our arguments are geometric in nature and so we make only minimal smoothness assumptions. We only assume that f is continuous and that the equation has a unique solution to the initial value problem. Under these weaker smoothness conditions we reprove the classical result that for large c there is a unique positive heteroclinic orbit from 0 to 1 when f(0) = f(1) = 0 and f(u) > 0 for 0 < u < 1. When there are more zeros of f, there is the possibility of bifurcations of the heteroclinic orbit as c varies. We give a detailed analysis of the bifurcation of the heteroclinic orbits when f is zero at the five points −1 < −θ < 0 < θ < 1 and f is odd. The heteroclinic orbit that tends to 1 as t → ∞ starts at one of the three zeros, −θ, 0, θ as t → −∞. It hops back and forth among these three zeros an infinite number of times in a predictable sequence as c is varied.  相似文献   

19.
The wedge splitting test is performed on notched shaped specimens that enables the determination of energies for large fracture surfaces and material exhibiting brittle behaviour. A stability condition is deduced and found to depend on the Young's modulus and the R-curve behaviour. The latter is defined by the fracture toughness KR and fracture energy Rc both of which depend on the crack length. A stable crack propagation is enhanced by high ratios of KR/KR and Rc/KR2. The wedge loading tends to behave like raising the rigidity of the testing machine. The results are applied on an example with a special geometry.  相似文献   

20.
A dynamic-crack-curving criterion, which is valid under pure Mode I or combined Modes I and II loadings and which is based on either the maximum circumferential stress or minimum strain-energy-density factor at a reference distance ofr 0 from the crack tip, is verified with dynamic-photoelastic experiments. Directional stability of a Mode I crack propagation is attained when \(r_o= \frac{1}{{128\pi }}(\frac{{K_r }}{{\sigma _{ox} }})^2 V_o^2 (C,C_1 ,C_2 ) > r_c \) wherer c =1.3 mm for Homalite-100 used in the dynamic-photoelastic experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号