首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary  In automotive traction drives, power is transmitted by friction forces. The friction forces result from the shear stresses developed in lubricated and highly loaded contacts between rolling bodies. Due to the kinematics of a traction drive, shear velocities occur in both the rolling direction and perpendicular to it. Due to these shear velocities and by normal pressure, the lubricant is forced to build up shear stresses. The increase of the shear stresses may be modelled by a nonlinear viscous element. The describing differential equations are coupled by the equivalent shear stress, which defines the nonlinear behaviour of the element. A fast method is described to evaluate the coupled differential equations. By using a known analytical approximation for the equivalent shear stress, the differential equations are decoupled and can be solved analytically. In an iterative procedure the equivalent shear stress is updated, and the complete solution is found. The iterative method is extended to account for thermal effects in the contact. Received 17 June 1999; accepted for publication 26 October 1999  相似文献   

2.
In this study the tangential partial slip problems in Hertzian contact regions are treated by a numerical technique. The tangential loading may include tangential forces in the contact plane and a twisting moment normal to the contact plane. The Coulomb’s law of friction and the property that the direction of friction must oppose the relative motion lead to nonlinear equations. The Newton-Raphson method is utilized to solve these nonlinear equations. Numerical results for tangential tractions and sizes of stick and slip zones may be determined, and they agree with existing analytical results for circular contacts.  相似文献   

3.
This paper considers finite friction contact problems involving an elastic pin and an infinite elastic plate with a circular hole. Using a suitable class of Green's functions, the singular integral equations governing a very general class of conforming contact problems are formulated. In particular, remote plate stresses, pin loads, moments and distributed loading of the pin by conservative body forces are considered. Numerical solutions are presented for different partial slip load cases. In monotonic loading, the dependence of the tractions on the coefficient of friction is strongest when the contact is highly conforming. For less conforming contacts, the tractions are insensitive to an increase in the value of the friction coefficient above a certain threshold. The contact size and peak pressure in monotonic loading are only weakly dependent on the pin load distribution, with center loads leading to slightly higher peak pressure and lower peak shear than distributed loads. In contrast to half-plane cylinder fretting contacts, fretting behavior is quite different depending on whether or not the pin is allowed to rotate freely. If pin rotation is disallowed, the fretting tractions resemble half-plane fretting tractions in the weakly conforming regime but the contact resists sliding in the strongly conforming regime. If pin rotation is allowed, the shear traction behavior resembles planar rolling contacts in that one slip zone is dominant and the peak shear occurs at its edge. In this case, the effects of material dissimilarity in the strongly conforming regime are only secondary and the contact never goes into sliding. Fretting tractions in the forward and reversed load states show shape asymmetry, which persists with continued load cycling. Finally, the governing integro-differential equation for full sliding is derived; in the limiting case of no friction, the same equation governs contacts with center loading and uniform body force loading, resulting in identical pressures when their resultants are equal.  相似文献   

4.
In this paper, the fretting contact problem for two elastic solids with graded coatings is investigated. We assume a conventional axisymmetric Hertzian contact takes place between two elastic solids under the action of the normal pressure. The application of the torque produces an annulus of slip. It is assumed that the surface shear traction within the contact area is limited by Coulomb’s friction law and the torsion angel was produced within the central adhesion zone as a rigid body. The linear multi-layer model is used to model the functionally graded coating with arbitrarily varying shear modulus. This model divides the coating into a series of sub-layers with the elastic modulus varying linearly in each sub-layer and continuous on the sub-interfaces. By using the transfer matrix method and Hankel integral transform technique, this problem is formulated as the solution of the Cauchy singular integral equations. The contact tractions are calculated by solving the equations numerically. The results show that the appropriate gradual variation of the shear modulus can significantly alter the contact tractions. Therefore, graded coatings may have potential applications in improving the resistance to fretting contact damage at the contact surfaces.  相似文献   

5.
This paper presents an analytical and experimental study on the friction of non-conformal point contacts (ball-on-disk) under starved lubrication. Theoretical models were developed to simulate the behavior of friction and separation versus the degree of starvation while experimental measurements were conducted by using a Tribometer equipped with a torque sensor and a digital camera, which provided the possibility to use the optical interferometry technique simultaneously with measuring the friction. The effect of air-oil meniscus distance from the center of Hertzian contact on the friction between non-conformal surfaces was observed under starved conditions in sliding motion by capturing interferometric images. In addition, the reduction of friction by artificially-produced shallow micro-dents was investigated under severely starved and fully flooded conditions. Results show that the coefficient of friction increases dramatically when the air-oil meniscus starts to touch the circle of Hertzian contact and there is not such a significant difference in the friction between starved and fully flooded contacts since the air-oil meniscus is far away from the borders of Hertzian contact. In other words, the starvation of lubrication causes a high level of fatigue and wear of machine components when there is interference between the air-oil meniscus and the Hertzian contact. However, it was found that shallow micro-dents are helpful in reducing the friction under severe starvation conditions while the benefits of micro-dents are negligible for fully flooded conditions.  相似文献   

6.
A fundamental problem in the behaviour of the packing of spheres is that of the oblique compression of just two spheres. Here, the solution of this problem is obtained for the case of two identical homogeneous isotropic elastic spheres, since much use can then be made of the existing symmetry. In particular, the normal and shear components of traction on the contact area can be treated separately. Considerations of the normal force show that the contact area is circular and, furthermore, that this part of the solution is precisely that of normal Hertzian contact. To obtain that part of the solution corresponding to shear, two criteria are used. The first is that of no slip between the spheres, and the second is that the energy flux across the contact area must obey the appropriate symmetries of the problem. These symmetries are sufficient to make the solution unique. This solution differs greatly from that obtained when the spheres are first compressed normally and then sheared. In particular, it is shown that if slip does occur, then it will be in the form of sliding; whereas in the latter case, slip occurs only within a circular annulus.  相似文献   

7.
点接触润滑粗糙表面滑动摩擦力的预测研究   总被引:1,自引:5,他引:1  
在整个润滑区域内基于统一Reynolds方程的混合润滑模型,根据流变模型计算流体摩擦力,根据边界膜极限剪应力模型计算微突体接触摩擦力,二者相加得到混合润滑摩擦力.分析了粗糙度幅值和纹理对摩擦系数的影响以及非牛顿流变模型对流体摩擦系数的影响.模拟跨越整个润滑区,即弹流润滑、混合润滑和边界润滑,得到完整的Stribeck曲线.结果表明,表面越粗糙,混合润滑的摩擦系数越大,弹流润滑和边界润滑时粗糙度幅值影响很小.交叉斜纹的润滑效果优于横向纹理.不同极限剪应力流变模型计算的摩擦系数相差不大.  相似文献   

8.
In this paper, we consider the general interfacial characteristics of a square elastic block, pressed onto an elastically similar half-plane by a constant normal force, and subjected to oscillatory shear. It is found that there is a critical coefficient of friction, 0.543, above which the contact is permanently stuck along its entire length for a shearing force below about 55% of that needed to cause sliding. For shearing forces above this, the contact interface will either shakedown to a fully adhered state (depending on the degree of reversal of the shear loading) or will exhibit cyclic slip at an interior point. If the coefficient of friction is below 0.543, the application of normal load alone will produce equal and opposite slip zones attached to the contact edges. The subsequent imposition of a shear force causes the leading edge slip zone to increase in length while the presence of residual slipping tractions at the trailing edge causes the trailing edge to lift off. Under oscillatory loading, the contact edges cycle between slip and separation over a minute region while an interior point may exhibit cyclic slip if the loading history is sufficiently demanding. The results found are of practical relevance to the study of fretting fatigue of complete contacts, such as some types of spline joint.  相似文献   

9.
研究Winker地基模型上功能梯度材料涂层在一刚性圆柱形冲头作用下的摩擦接触问题。功能梯度材料涂层表面作用有法线向和切线向集中作用力。假设材料非均匀参数呈指数形式变化,泊松比为常量,利用Fourier积分变换技术将求解模型的接触问题转化为奇异积分方程组,再利用切比雪夫多项式对所得奇异积分方程组进行数值求解。最后,给出了功能梯度材料非均匀参数、摩擦系数、Winker地基模型刚度系数及冲头曲率半径对接触应力分布和接触区宽度的影响情况。  相似文献   

10.
Two rough plates with multiple contacts of diverse microgeometries are pressed against one another. Two types of contacts can be distinguished: Hertzian ones and “welded” areas. We find that for circular contacts (1) the two types produce the same effect on the incremental stiffness of the interface and on the effective conductivity across it if their contact areas are the same; (2) for both contact types, the compliance and the conductivity are controlled by the same microstructural parameter, where Sk is the kth contact area; (3) the explicit cross-property connection is established that gives the (incremental) stiffness in terms of the conductivity; it holds for an arbitrary mixture of Hertzian and welded contacts and does not require any knowledge of their microgeometries. Whereas the two types of contacts produce the same effect on the incremental stiffness, the Hertzian contacts cause non-linearities (the incremental stiffness increases with loading). The non-linearity is controlled by the microstructural parameter that is sensitive to contrasts of curvatures of the contacting parts. Model predictions are generally in good agreement with experimental data on conductivities of rough metal surfaces and stiffnesses of rough rock surfaces.  相似文献   

11.
Classically, the transition from stick to slip is modelled with Amonton–Coulomb law, leading to the Cattaneo–Mindlin problem, which is amenable to quite general solutions using the idea of superposing normal contact pressure distributions – in particular superposing the full sliding component of shear with a corrective distribution in the stick region. However, faults model in geophysics and recent high-speed measurements of the real contact area and the strain fields in dry (nominally flat) rough interfaces at macroscopic but laboratory scale, all suggest that the transition from ‘static’ to ‘dynamic’ friction can be described, rather than by Coulomb law, by classical fracture mechanics singular solutions of shear cracks. Here, we introduce an ‘adhesive’ model for friction in a Hertzian spherical contact, maintaining the Hertzian solution for the normal pressures, but where the inception of slip is given by a Griffith condition. In the slip region, the standard Coulomb law continues to hold. This leads to a very simple solution for the Cattaneo–Mindlin problem, in which the “corrective” solution in the stick area is in fact similar to the mode II equivalent of a JKR singular solution for adhesive contact. The model departs from the standard Cattaneo–Mindlin solution, showing an increased size of the stick zone relative to the contact area, and a sudden transition to slip when the stick region reaches a critical size (the equivalent of the pull-off contact size of the JKR solution). The apparent static friction coefficient before sliding can be much higher than the sliding friction coefficient and, for a given friction fracture “energy”, the process results in size and normal load dependence of the apparent static friction coefficient. Some qualitative agreement with Fineberg's group experiments for friction exists, namely the stick–slip boundary quasi-static prediction may correspond to the arrest of their slip “precursors”, and the rapid collapse to global sliding when the precursors arrest front has reached about half the interface may correspond to the reach of the “critical” size for the stick zone.  相似文献   

12.
采用直流磁控溅射与高功率磁脉冲磁控溅射制备了以Ti为过渡层的MoS_2/C复合薄膜,并对其结构、组分、力学性能以及摩擦学行为进行了研究.摩擦测试结果表明:载荷增加时,摩擦系数与磨损率呈规律性降低趋势;通过赫兹接触模型对平均摩擦系数进行分析拟合,发现载荷的变化带来赫兹接触面积与接触压强的不同,导致了摩擦系数的变化;通过对摩擦产物的拉曼光谱分析发现不同载荷对非晶碳石墨化程度影响不明显;借助透射电子显微镜对转移膜的微结构进行分析,发现转移膜主要是排列有序且基面平行于滑移界面的MoS_2层,使其在较高载荷下仍具有低的剪切强度,因而获得低的摩擦系数.进一步采用同一磨球、磨痕体系从高载荷到低载荷变化的连续摩擦验证式试验,可以得出,MoS_2/C复合薄膜在所有高载荷条件下获得低摩擦系数,赫兹接触起着主导作用.  相似文献   

13.
A novel and improved atomistic simulation based cohesive zone law characterizing interfacial debonding is developed which explicitly accounts for the non-planarity of the crack propagation. Group of atoms in the simulation constituting cohesive zones which are used to obtain local stress and crack opening displacement data are determined dynamically during the non-planar crack growth as they cannot be determined apriori. The methodology is used to study the debonding of Σ5 (2 1 0)/[0 0 1] symmetric tilt grain boundary interface in a Cu bicrystal under several mixed mode loading conditions. Simulations show that such bicrystalline specimen exhibits three types of energy dissipative mechanisms – shear coupled GB migration (SCM) away from the crack-tips, change in spacial orientation of GB structural units rendering highly disordered grain boundary near the crack tips and brittle intergranular fracture. Which combination of these three deformation mechanism will be active influencing the degree of non-planarity of the crack propagation at various stages of loading depends on the loading mode-mixity. As the ratio of shear component of the loading parallel to the GB plane and normal to the tilt axis with respect to the normal loading increases (thereby increasing the mode-mixity), overall strain-to-failure also increases and SCM tends to become the dominant deformation mechanism. Through this framework, analytical functional forms and parameters describing cohesive laws for both normal and shear traction as a function of the mode-mixity of the loading and crack opening displacement are predicted.  相似文献   

14.
Three-dimensional photoelasticity was employed to study a cylinder in contact with a half-space. Both bodies were modeled in epoxy resin. Three loading cases were examined, namely, the cylinder lying on its side subject to a load normal to the plane, the cylinder on its side subject to both normal and tangential loads and the cylinder standing on its end and subject to a normal compressive load, i.e., as a circular punch. The cylinders and the half-space, which was represented by a large block, were stress frozen with a known coefficient of friction and using relatively small loads so that the strain levels were low. After slicing the cylinders, which resulted in lower fringe orders than could be readily analyzed manually, an automated system based on phase stepping was used to record and process the data. Distributions of maximum shear stress and Cartesian shear stress were obtained for a large area of the slice. Stress separation was performed, using the shear difference method, to obtain the Cartesian stress components in the plane of symmetry of the half-space. These results provide confirmation, by experiment, of the theoretical and numerical models of this type of contact obtained by other investigators.  相似文献   

15.
Straight and Bent nano-cantilever specimens are respectively proposed to investigate the single-mode and mixed-mode crack initiation at the Cu/Si interface edge in nanoscale components. With a minute loading apparatus, all nanoscale samples are in situ loaded and observed. Numerical analysis is employed to acquire the critical interfacial stress distributions during crack initiation. The stress concentration regions near the edge of Cu/Si interface in all specimens are within the scale of 100 nm, and the critical normal and shear stresses have a circular relation in nanoscale components, which represents the fracture criterion of the interface in nanoscale components.  相似文献   

16.
Wheeled vehicle mobility on loose sand is highly subject to shear deformation of sand around the wheel because the shear stress generates traction force of the wheel. The main contribution of this paper is to improve a shear stress model for a lightweight wheeled vehicle on dry sand. This work exploits two experimental approaches, an in-wheel sensor and a particle image velocimetry that precisely measure the shear stress and shear deformation generated at the interaction boundary. Further, the paper improves a shear stress model. The model proposed in this paper considers a force chain generated inside the granular media, boundary friction between the wheel surface and sand, and velocity dependency of the friction. The proposed model is experimentally validated, and its usefulness is confirmed through numerical simulation of the wheel traction force. The simulation result confirmed that the proposed model calculated the traction force with an accuracy about 70%, whereas the conventional one overestimated the force, and its accuracy was 13% at the best.  相似文献   

17.
Reliable analysis of the local stress fields in the vicinity of sliding frictional contacts of engineering components is a pre-requisite for the reliable assessment of structural integrity. In this paper we present the use of Muskhelishvili potentials to derive an analytical solution for a semi-infinite punch with a rounded edge pressed against a half-pane substrate, and a general numerical solution for a kind of Cauchy integral involved in the analytical contact solution. Using these solutions, the effect of the friction coefficient on the normal traction distribution is investigated. Numerical results show that the peak normal traction value is altered in comparison with the frictionless case solution, but this variation is mild (less than 5%), provided the friction coefficient does not exceed about 0.6. Finally, the adaptation of the analytical result to the solution of practical contact problems is addressed.  相似文献   

18.
The feasibility of utilizing simple beam specimens as candidates for fracture-toughness testing of brittle nonmetallic materials was explored. Four-point and three-point loaded beams were examined via theoretical considerations with regard to crack-growth stability and constant-deflection loading taking into account the stiffness or compliance of the loading system. It was found that the compliance of the loading system played a major role with regard to crackgrowth stability. Also, a four-point loaded beam exhibited greater stability than a three-point loaded beam. The geometry of the four-point specimen configuration was optimized within practical limits to yield a test system that would sevre as a successful candidate for fracture-toughess testing if the compliance of the testing machine and ancillary equipment could be kept below a practicable level. Paper was presented at the 1986 SEM Fall Conference on Experimental Mechanics held in Keystone CO on November 2–5.  相似文献   

19.
Abstract

Stress intensity factors are evaluated for a singly or doubly cracked fastener hole with frictional traction in an anisotropic plate, using a special kernel boundary integral equation (BIE) approach. The integration kernel (Green's function) used in this BIE approach has already taken the presence of the crack (or cracks) into account, thus.avoiding the need for element discretization to model the stress singularity at the crack tip. The Green's function employed is that of an infinite anisotropic plate containing an elliptical hole or crack, and subjected to an arbitrarily positioned point force. Several types of normal and shear traction conditions at the pinhole interface are considered. Numerical results are obtained for various geometrical and loading conditions and are compared with known solutions, where available, for their isotropic counterparts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号