首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
激光陀螺捷联惯导系统尺寸效应参数标定与优化补偿   总被引:2,自引:0,他引:2  
提出一种捷联惯导系统尺寸效应标定补偿方法,先标定出捷联惯导系统中每个加速度计相对于三轴转台回转中心的杆臂参数,再基于尺寸效应误差最小原则,对载体坐标系原点位置进行优化,得出相应的尺寸效应参数。对于零偏稳定性优于2×10^-5g的加速度计,杆臂参数与尺寸效应参数标定重复性优于0.2mm。将载体坐标系原点置于三轴转台回转中心,以重力加速度g为基准验证标定补偿效果,转台匀速转动情况下,补偿后10min平均偏差小于2×10^-6g。根据激光陀螺角增量采样值求出角速度和角加速度,对惯导实验中的尺寸效应进行补偿,在转台角运动条件下纯惯性导航1h定位误差由尺寸效应补偿前的1600m减小到补偿后的300m以内。  相似文献   

2.
转台角位置基准误差对激光捷联惯导标定的影响分析   总被引:1,自引:1,他引:0  
研究了利用三轴转台标定时,转台角位置基准误差对激光捷联惯导系统标定精度的影响.从理论上推导了转台角位置基准误差与激光捷联惯导系统标定结果之间的数学关系,得到以下结论:北向以及水平基准误差对陀螺仪零偏与标度因数的标定影响较小,对陀螺安装误差系数的标定影响较大,当误差角为1°时,标定误差将达到0.33×10-3 (′/s)/P;北向基准误差对加速度计标定结果的影响很小,而水平基准误差对加速度计的标定影响较大.仿真与标定实验均验证了理论分析的正确性,因此标定实验前转台的调平、对北工作是必不可少的.  相似文献   

3.
针对激光陀螺具有标度因数稳定、漂移误差变化小的特点,建立了适合激光陀螺捷联惯导系统的陀螺及加速度计组件简化误差参数模型,推导出了适合激光陀螺捷联惯导系统外场快速自标定的误差模型,设计了激光陀螺捷联惯导系统9位置系统级标定方法,并通过试验验证了该方法可快速准确的标定出加速度计组件的标度因数、安装误差、零偏及激光陀螺安装误差等15个主要参数,方法简单易行。  相似文献   

4.
激光捷联惯导系统的误差参数随着时间的推移会发生变化,为了实现惯导系统长期稳定使用且不拆装系统,需要对外场动态条件下激光陀螺捷联惯导系统的系统级标定方法进行研究.首先根据线性时变系统的可现测性判据详细地分析了动态条件下捷联惯导系统的可观测性,从而给出了完全激励惯导系统12个误差参数(加速度计零偏、标度因数误差以及陀螺零偏...  相似文献   

5.
激光陀螺惯性测量单元系统级标定方法   总被引:1,自引:0,他引:1  
传统的分立标定方法必须依靠高精度的转台提供姿态基准,不满足带减振器的惯性测量单元(IMU)和现场标定需求.首先建立了附加约束条件的陀螺和加速度计安装坐标系数学模型,根据陀螺和加速度计的输出误差方程,从惯性导航基本误差方程出发推导了惯性测量单元的系统级误差参数标定Kalman滤波模型,该模型包含了陀螺和加速度计零偏、比例因子、安装误差在内共21维标定误差状态变量,且仅以速度解算误差为观测量.依据所建立的模型和设计的标定路径对此系统级标定方法进行了仿真,仿真结果表明,陀螺和加速度计零偏估计精度分别优于0.005°/h和0.005 mg,安装误差估计精度优于1″,比例因子误差优于1ppm,满足高精度惯导系统的标定需求.  相似文献   

6.
为提高大过载高动态环境下捷联惯导系统导航精度,需对捷联惯导系统中的石英挠性加速度计非线性误差参数进行精确标定。针对现有标定方法在加速度计非线性误差参数发生变化时无法满足免拆卸高精度标定的问题,设计了一种基于双轴精密离心机和捷联惯导系统转位机构交替旋转、依靠转位机构实现9位置标定路径的系统级标定方法。经理论分析和仿真验证,所提方法可实现加速度计二次项、交叉耦合项共九个非线性误差参数系统级高精度标定,二次项误差参数标定精度优于1.0×10-6 g/g2,交叉耦合项误差参数标定精度优于1.5×10-6 g/g2。  相似文献   

7.
针对温度变化引起的惯导系统中石英挠性加速度计测量误差,提出了一种基于比力差分测量的加速度计温度误差补偿方法。首先,建立包含温变速率影响的温度误差模型,利用标定惯导系统加速度计参数时的温度作为标定参数温度基准。其次,借助不带转台的温箱对惯导系统进行全温测试,通过同一方位前后时间段加速度计输出的差分消除未知的比力真值,只保留由于温度改变引起的标度因数与零偏变化,通过多位置观测对这两项参数进行最小二乘拟合估计,获得对应温度系数。该方法不需要温箱具备高精度定位基准,能够实现全温范围与快速变温工作条件下温度误差的精确建模。试验结果表明,应用该补偿方法可使加速度计测量精度在全温范围内保持在10μg量级。  相似文献   

8.
为降低捷联惯导系统标定对转台精度的要求,提出了一种利用低精度双轴转台对捷联惯导进行系统级标定的10位置标定方法。通过选取恰当的惯性组件坐标系,建立加速度计和陀螺仪的输出误差模型,在双轴转台上合理进行10位置编排,然后利用系统翻滚过程中的导航误差作为观测量,全面辨识出包括加速度计标度因数非线性项的24个系统误差系数。通过数学仿真和实物试验两方面验证,该方法可在低精度双轴转台上全面辨识出系统误差系数,精度同在精密转台上使用传统方法标定精度相当,且标定时间短,方法简单易行。  相似文献   

9.
惯性元件参数的长期稳定决定着惯导系统的精度,目前对于激光陀螺捷联惯导系统(RLG-SINS)主要是采用系统级旋转调制技术来实现高精度导航能力,同时系统级旋转也提高了初始对准精度以及惯性元件误差的可观测性。针对激光陀螺惯导系统惯性元件误差项的特点,同时结合分立式标定与系统级标定各自的优势,设计了一种水平阻尼模式下的Kalman滤波方案,利用双轴旋转机构,通过观测导航位置误差来实现初始对准以及部分惯性元件误差参数的标定,可以有效地减小惯性元件逐次启动误差对导航精度的影响。仿真结果表明,系泊状态零速度阻尼模式下工作4 h,可以标定出石英加速度计标度因数误差、零偏与激光陀螺零偏,共计9项误差参数。加速度计零偏估计误差小于2%,陀螺零偏估计误差小于8%,误差估计精度满足高精度惯性导航要求,该方法具备一定的工程实用性。  相似文献   

10.
在捷联惯导系统中,陀螺和加速度计直接感测载体的角运动、线运动和干扰运动,由于载体角运动的影响,当三个加速度计测量质心与载体质心不重合时,将引起加速度计的测量误差(即尺寸效应误差)。对于中高精度的捷联惯导系统,当载体处于高动态情况下,尺寸效应误差已不能忽略,需要对其进行误差补偿。首先对加速度计组件在一般安装关系下的尺寸效应误差模型进行推导,然后提出一种新的利用陀螺输出角度增量信息和尺寸效应参数来计算加速度计尺寸效应误差的积分表达式,将其从加速度计输出速度增量中去除,即可完成尺寸效应误差补偿。最后通过仿真证明,新补偿算法产生的导航系统定位误差的舒拉周期振荡幅值明显减小,定位精度比补偿前提高了5-6倍左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号