首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
汽车工程中的若干力学问题   总被引:1,自引:1,他引:0  
汽车的设计、开发和使用离不开力学.简述汽车的发展历史、主要组成及其性能.介绍汽车工程中的几个关键力学问题,包括汽车轮胎力学、行驶稳定性分析、驱动与阻力、振动与噪声、碰撞力学与车身耐撞性、撞击损伤生物力学、行人保护力学等.展望了汽车工程中需要关注的力学问题.  相似文献   

2.
在发现碳纳米管后不久,对于这些有趣结构的力学性质--包括高强度、高硬度、低密度和结构的完美性的理论预测,使人们认识到它们可能具有理想的科技应用价值.对这些预测的实验验证或个别验伪以及大量基于不同模型的计算机模拟方法,使得逾10年来对碳纳米管力学的理解日趋深入但远未达到尽头.本文回顾了理论预测,并对这种微小结构的观察和操作中经常用到的富有挑战性的实验技术进行了讨论.略述了采用的计算方法包括从头算法量子力学模拟、经典分子动力学和连续介质模型.多尺度和多物理模型的发展和模拟工具自然而然作为连接基础科学问题和工程应用的结果而出现,而这个主题仍然正在抓紧研究中.这里介绍了研究此主题的一些方法.注意力主要集中于研究力学性质的揭示方面,如杨氏模量、弯曲刚度、屈曲准则、拉伸和压缩强度.最后,讨论了利用这些性质的几个令人兴奋的应用例子,包括纳米绳束、填充的纳米管、纳米机电系统、纳米传感器和纳米管增强复合材料,引用了349篇参考文献. 图41参349  相似文献   

3.
征稿简则     
《力学学报》2009,41(2)
1.《力学学报》是力学学科的综合性学术刊物.它遵循理论与实践统一和百花齐放、百家争鸣的方针,主要刊载:在理论上、方法上以及对国民经济建设方面,具有创造性的力学理论、实验和应用研究论文,综述性的专题论文以及研究简报,学术讨论等,以促进力学学科的发展,为社会主义四个现代化服务.读者对象主要为从事力学工作的科研人员、高等院校师生以及工程技术人员.  相似文献   

4.
征稿简则     
《力学学报》2011,43(3):642
1.《力学学报》是力学学科的综合性学术刊物.它遵循理论与实践统一和百花齐放、百家争鸣的方针,主要刊载:在理论上、方法上以及对国民经济建设方面,具有创造性的力学理论、实验和应用研究论文,综述性的专题论文以及研究简报,学术讨论等,以促进力学学科的发展,为社会主义四个现代化服务.读者对象主要为从事力学工作的科研人员、高等院校师生以及工程技术人员.  相似文献   

5.
针对低含水软地面低黏性、高摩擦的力学特性,以刚性履带在干燥壤土行驶这一典型工况为试验条件,基于离散单元法选取合理的颗粒细观参数,在三轴剪切试验的基础上建立并验证了土壤数值仿真模型。通过数值牵引试验,对刚性履带低含水软地面的附着特性进行了离散元细观分析。分析表明,土壤附着力随履刺的向后排列而递减;垂直于履带行驶方向的附着作用不可忽略;离散元法能更好地还原低含水软地面的力学特性,揭示了土壤颗粒在动态荷载下非连续的本质,适合于干燥、松散的低含水软地面数值研究。  相似文献   

6.
征稿简则     
<正>1.《力学学报》是力学学科的综合性学术刊物.它遵循理论与实践统一和百花齐放、百家争鸣的方针,主要刊载:在理论上、方法上以及对国民经济建设方面,具有创造性的力学理论、实验和应用研究论文,综述性的专题论文以及研究简报,学术讨论等,以促进力学学科的发展,为社会主义四个现代化服务.读者对象主要为从事力学工作的科研人员、高等院校师生以及工程技术人员.  相似文献   

7.
征稿简则     
<正>1.《力学学报》是力学学科的综合性学术刊物.它遵循理论与实践统一和百花齐放、百家争鸣的方针,主要刊载:在理论上、方法上以及对国民经济建设方面,具有创造性的力学理论、实验和应用研究论文,综述性的专题论文以及研究简报,学术讨论等,以促进力学学科的发展,为社会主义四个现代化服务.读者对象主要为从事力学工作的科研人员、高等院校师生以及工程技术人员.  相似文献   

8.
征稿简则     
《力学学报》2010,42(3)
<正>1.《力学学报》是力学学科的综合性学术刊物.它遵循理论与实践统一和百花齐放、百家争鸣的方针,主要刊载:在理论上、方法上以及对国民经济建设方面,具有创造性的力学理论、实验和应用研究论文,综述性的专题论文以及研究简报,学术讨论等,以促进力学学科的发展,为社会主义四个现代化服务.读者对象主要为从事力学工作的科研人员、高等院校师生以及工程技术人员.  相似文献   

9.
大数据在全世界发展迅猛, 应用成效显著.大数据独特的思维和方法, 为科学研究与探索提供了全新的范式.力学研究中,高时空分辨率、多参数同步观测与高精度、大规模模拟手段的发展,为力学大数据的发展提供了契机,大数据、机器智能方法的应用正呈现快速上升趋势.本文旨在分析大数据思维方法在力学研究中的应用, 及其启示与挑战.首先从大数据资源、大数据科学及大数据技术3个层面分析了大数据的内涵及研究态势,概括了国内外政府及组织机构的大数据发展规划.而后对比分析了力学思维方法与大数据思维方法的特点,指出两者的本质区别在于数据使用方式的不同而带来的范式差异:大数据采用数据驱动模型替代力学中的偏微分方程组以描述问题,在复杂系统的分析、预测中优势显著.回顾了大数据方法在材料性能预测、材料本构建模、湍流建模、结构健康监测及试验力学等方面的最新研究进展,以及动态数据驱动与数字孪生等大数据驱动的建模模拟新范式.总结了大数据在力学研究中应用的3种方式, 即驱动已有模型改进,挖掘复杂隐含的规律, 以及替代已有的理论方法等. 最后,建议以力学研究为主体和牵引, 大数据与力学双驱动,推动大数据与力学交叉形成理论与方法突破、及学科发展新方向.   相似文献   

10.
该文系统总结了作者团队在脑科学领域内提出的神经能量理论与方法,以及力学与神经能量理论之间的内在联系.着重介绍了如何运用分析动力学的思想构建一个与H-H模型等效的W-Z神经元模型.并以此为基础,在神经科学领域内提出了以神经能量为核心的大尺度神经科学模型和大脑全局神经编码的理论框架.在包括视知觉等多个感知觉神经系统的信息处理、大脑的智力探索以及预测神经元新的工作机制、解释神经科学难以解释的实验现象等方面,证实了这个新颖的神经元模型所展现出来的独特功能与优势.由于可塑性是认知神经科学与智能行为的核心,通过蛋白质分子机器的经典力学分析,进一步阐明了神经元的可塑性和神经发育不仅仅只是生物化学反应过程,力学的作用与贡献也是不可或缺的重要因素.表明了力学科学在神经科学、生命科学中的研究思想及其内在逻辑的深远影响.这些研究对于今后推动实验神经科学与理论神经科学的融合,摒弃神经科学领域中还原论与整体论研究方法中的不足,并将它们各自的优点进行有效地整合,促进力学科学的理论与方法的渗透是极其重要的.   相似文献   

11.
For the design of space missions in the Moon and planets, analysis of mobility in robots is crucial and poor planning has led to abortion of missions in the past. To mitigate the risk of mission failure, improved algorithms relying intrinsically on fusing visual odometry with other sensory inputs are developed for slip detection and navigation. However, these approaches are significantly expensive computationally and difficult to meet for future space exploration robots. Hence, today the central question in the field is how to develop a novel framework for in situ estimation of rover mobility with available space hardware and low-computational demanding terramechanics predictors. Ranging from pure simulations up to experimentally validated studies, this paper surveys dozens of existing methodologies for detection of vehicle motion performance (wheel forces and torques), surface hazards (slip-sinkage) and other parameters (soil strenght constants) using classical terramechanics maps, and compare them with novel approaches introduced by machine learning, allowing to establish future directions of research towards distributed exteroceptive and proprioceptive sensing for visionless exploration in dynamic environments. To avoid making it challenging to collect all relevant studies expeditiously, we propose a global classification of terramechanics according most common practices in the field, allowing to form an structured framework that condense most works in the domain within three estimator categories (direct/forward or inverse terramechanics, and slip estimators). Likewise, from the experiences collected in previous MER (Mars Exploration Rover) missions, five overlooked problems are documented that will need to be addressed in next generation of planetary vehicles, along three research questions and few hypothesis that will pave the road towards future applications of machine learning-based terramechanics.  相似文献   

12.
Tire/terrain interaction has been an important research topic in terramechanics. For off-road vehicle design, good tire mobility and little compaction on terrain are always strongly desired. These two issues were always investigated based on empirical approaches or testing methods. Finite element modeling of tire/terrain interaction seems a good approach, but the capability of the finite element has not well demonstrated. In this paper, the fundamental formulations on modeling soil compaction and tire mobility issues are further introduced. The Drucker-Prager/Cap model implemented in ABAQUS is used to model the soil compaction. A user subroutine for finite strain hyperelasticity model is developed to model nearly incompressible rubber material for tire. In order to predict transient spatial density, large deformation finite element formulation is used to capture the configuration change, which combines with soil elastoplastic model to calculate the transient spatial density due to tire compaction on terrain. Representative simulations are provided to demonstrate how the tire/terrain interaction model can be used to predict soil compaction and tire mobility in the field of terramechanics.  相似文献   

13.
Through the foundation and work of ISTVS, a forum and a megaphone have been provided to allow an interchange of terramechanics ideas among the Society's members. The important achievements in the science of terramechanics, which have been assisted by the Society's membership, are reviewed.The role of terramechanics in machine design has an effect on vehicle component geometry and selection. As an example, five agricultural tractor types are compared with respect to their tractive performance, based on an analysis of soil properties tire design, and ground pressure distribution. An analysis is also presented concerning traction-slip curves of radial and diagonal tires by accounting for the various componets of traction force and rolling resistance.Tractor development in the U.S.A. and Germany is discussed, together with the factors that have influenced this development since 1950. Consumption of energy in agriculture is analyzed, and the need for conservation of energy through more efficient fuel use, cultivation, and stabilization of energy consumption per worker is developed. The contribution that terramechanics can make to this effort by improving traction efficiences, optimal tractor design, soil cultivation practices, and off-road transportation is identified.  相似文献   

14.
ISTVS embarked on a project in 2016 that aims at updating the current ISTVS standards related to nomenclature, definitions, and measurement techniques for modelling, parameterizing, and, respectively, testing and validation of soft soil parameters and vehicle running gear-terrain interaction. As part of this project, a comprehensive literature review was conducted on the parameterization of fundamental terramechanics models. Soil parameters of the empirical models to assess off-road vehicle mobility, and parameters of the models to characterize the response of the terrain interacting with running gears or plates from the existing terramechanics literature and other researchers’ reports were identified. This review documents and summarizes the modelling approaches that may be applicable to real-time applications of terramechanics in simulation, as well as in controller design.  相似文献   

15.
The next generation of forestry machines must be developed to be gentler to soil and to the root mat than present machines, especially in thinning operations. The bearing capacity of the soil is a key property for determining the terrain trafficability and machine mobility. This asks for better and more general terramechanics models that can be used to predict the interaction between different machine concepts and real and complex forest soil.This paper presents results from terramechanics experiments of rooted soil with a new and small-scale testing device. The force–deflection results are analyzed and compared with analytical root reinforcement models found in literature. The presented study indicates that rooted soil properties obtained with the new laboratory test device can be used to create an augmented soil model that can be used to predict the bearing capacity of rooted soil and also to be used in dynamic machine–soil interaction simulations.  相似文献   

16.
The US army along with NATO member and partner nations’ militaries need an accurate software tool for predicting ground vehicle mobility (such as speed-made-good and fuel-consumption) on world-wide terrains where military vehicles may be required to operate. Currently, the NATO Reference Mobility Model (NRMM) is the only NATO recognized tool for assessing ground vehicle mobility. NRMM was developed from the 1960s to the 1980s and relies on steady-state empirical formulas which may not be accurate for new military ground vehicles. A NATO research task group (RTG-248) was established from 2016 to 2018 to develop the NG-NRMM (next-generation NRMM) software tool requirements and an NG-NRMM prototype which uses high-fidelity “simple” or “complex” terramechanics models for the terrain/soil along with modern 3D multibody dynamics software tools for modeling the vehicle. NG-NRMM Complex Terramechanics (CT) models are those that utilize full 3D soil models capable of predicting the 3D soil reaction forces on the vehicle surfaces (including tires, tracks, legs, and under body) and the 3D flow and deformation of the soil including both elastic and plastic deformation under any 3D loading condition. In Part 1 of this paper, an overview of the full spectrum of terramechanics models from the highest fidelity to the lowest fidelity is presented along with a literature review of CT ground vehicle mobility models.  相似文献   

17.
In planetary exploratory rover simulation, the contact model between wheel and terrain inevitably has some differences in contrast with the real one, which can make rover depart the planned track. To eliminate the dynamic errors caused by it, this paper presents a method for on-line soil parameters modification. This paper classifies data errors between virtual rover and real rover as model errors and asynchronous errors. Before modification, data identification is utilized to eliminate asynchronous errors and get a group of effective data with least additional errors. Based on the simplified terramechanics model, the origins of model errors are analyzed in detail from static status and kinetic status; meanwhile, some soil parameters are decoupled from the complicated model, and it makes on-line soil parameters modification feasible. An effective coefficient is also proposed to maintain the stability and convergence of modification. Lastly, through simulations on ROSTDyn (ROver Simulation based on Terramechanics and Dynamics), it is demonstrated that the soil parameters modification method is effective and useful for rover simulation to eliminate dynamic errors of predictive model.  相似文献   

18.
Planetary rovers are different from conventional terrestrial vehicles in many respects, making it necessary to investigate the terramechanics with a particular focus on them, which is a hot research topic at the budding stage. Predicting the wheel-soil interaction performance from the knowledge of terramechanics is of great importance to the mechanical design/evaluation/optimization, dynamics simulation, soil parameter identification, and control of planetary rovers. In this study, experiments were performed using a single-wheel testbed for wheels with different radii (135 and 157.35 mm), widths (110 and 165 mm), lug heights (0, 5, 10, and 15 mm), numbers of lugs (30, 24, 15, and 8), and lug inclination angles (0°, 5°, 10°, and 20°) under different slip ratios (0, 0.1, 0.2, 0.3, 0.4, 0.6, etc.). The influences of the vertical load (30 N, 80 N, and 150 N), moving velocity (10, 25, 40, and 55 mm/s), and repetitive passing (four times) were also studied. Experimental results shown with figures and tables and are analyzed to evaluate the wheels’ driving performance in deformable soil and to draw conclusions. The driving performance of wheels is analyzed using absolute performance indices such as drawbar pull, driving torque, and wheel sinkage and also using relative indices such as the drawbar pull coefficient, tractive efficiency, and entrance angle. The experimental results and conclusions are useful for optimal wheel design and improvement/verification of wheel-soil interaction mechanics model. The analysis methods used in this paper, such as those considering the relationships among the relative indices, can be referred to for analyzing the performance of wheels of other vehicles.  相似文献   

19.
This paper extends previous research in planetary microrover locomotion system analysis at the University of Surrey through the development of a legged microrover mobility model. This model compares various two- and three-dimensional soil cutting models to determine the most applicable model to legged locomotion in deformable soils, and is flexible to use any of these models depending on the leg shape, sinkage and other conditions. This baseline draught force model is used for determining the soil forces available for legged vehicle locomotion, as well as the soil thrust available to the vehicle footprint. Empirical investigations were performed with a robotic arm in planetary soil simulants to validate a legged mobility model through determination of the draft force of a robotic leg pushing through soil at constant and varying sinkage levels. The resulting locomotion performance model will be used to predict the ability of the legged vehicle to traverse a specific soil. An introduction to the planetary soil simulants used in this study (SSC-1 quartz-based sand and SSC-2 garnet-based sand) and the process used to determine their mechanical properties is also briefly presented to provide a baseline for this research.  相似文献   

20.
The observation motivating this contribution was a perceived lack of expeditious deformable terrain models that can match in mobility analysis studies the level of fidelity delivered by today’s vehicle models. Typically, the deformable terrain-tire interaction has been modeled using Finite Element Method (FEM), which continues to require prohibitively long analysis times owing to the complexity of soil behavior. Recent attempts to model deformable terrain have resorted to the use of the Discrete Element Method (DEM) to capture the soil’s complex interaction with a wheeled vehicle. We assess herein a DEM approach that employs a complementarity condition to enforce non-penetration between colliding rigid bodies that make up the deformable terrain. To this end, we consider three standard terramechanics experiments: direct shear, pressure-sinkage, and single-wheel tests. We report on the validation of the complementarity form of contact dynamics with friction, assess the potential of the DEM-based exploration of fundamental phenomena in terramechanics, and identify numerical solution challenges associated with solving large-scale, quadratic optimization problems with conic constraints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号