首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
An analysis of buckling/snapping and bending behaviors of magneto-elastic-plastic interaction and coupling for cantilever rectangular soft ferromagnetic plates is presented.Based on the expression of magnetic force from the variational principle of ferromagnetic plates,the buckling and bending theory of thin plates,the Mises yield criterion and the increment theory for plastic deformation,we establish a numerical code to quantitatively simulate the behaviors of the nonlinearly multi-fields coupling problems by the finite element method.Along with the phenom- ena of buckling/snapping and bending,or the characteristic curve of deflection versus magnitude of applied magnetic fields being numerically displayed,the critical loads of buckling/snapping, and the influences of plastic deformation and the width of plate on these critical loads,the plastic regions expanding with the magnitude of applied magnetic field,as well as the evolvement of deflection configuration of the plate are numerically obtained in a case study.  相似文献   

2.
The key to revealing the behaviors of magnetoelastic interaction is how to express themagnetic forces applying on a ferronqagnetic elastic body.In this paper,a functional for a ferromag-netic thin plate in magnetic fields is proposed by taking the summation of the magnetic energy of themagnetic system and the strain energy of the elastic plates.We present a variational principle for theproblem by choosing the variations of magnetic potential and deflection as independent variates eachother.Based on the principle,not only are the simultancous governing equations for magnetic fieldsand deformation of structures deduced,but also a general expression of magnetic force acting on theplates is gained,which makes it possible to commonly simulate the distinct two experiments of magne-toelastic interaction in a theoretical model.Thus,it can be used to theoretical prediction of the magne-toelastic interaction of ferromagnetic plates in a complex environment of applied magnetic fields.  相似文献   

3.
This article presents closed-form solutions for the frequency analysis of rectangular functionally graded material(FGM) thin plates subjected to initially in-plane loads and with an elastic foundation. Based on classical thin plate theory, the governing differential equations are derived using Hamilton's principle. A neutral surface is used to eliminate stretching–bending coupling in FGM plates on the basis of the assumption of constant Poisson's ratio. The resulting governing equation of FGM thin plates has the same form as homogeneous thin plates. The separation-ofvariables method is adopted to obtain solutions for the free vibration problems of rectangular FGM thin plates with separable boundary conditions, including, for example, clamped plates. The obtained normal modes and frequencies are in elegant closed forms, and present formulations and solutions are validated by comparing present results with those in the literature and finite element method results obtained by the authors. A parameter study reveals the effects of the power law index n and aspect ratio a/b on frequencies.  相似文献   

4.
DYNAMIC BUCKLING OF STIFFENED PLATES UNDER FLUID-SOLID IMPACT LOAD   总被引:1,自引:0,他引:1  
A simple solution of the dynamic buckling of stiffened plates under fluid-solid impact loading is presented. Based on large deflection theory, a discretely stiffened plate model has been used. The tangential stresses of stiffeners and in-plane displacement are neglected. Applying the Hamilton‘ s principle, the motion equations of stiffened plates are obtained. The deflection of the plate is taken as Fourier series, and using Galerkin method, the discrete equations can be deduced, which can be solved easily by Runge-Kutta method. The dynamic buckling loads of the stiffened plates are obtained from Budiansky-Roth ( B-R ) curves.  相似文献   

5.
Thermal buckling analysis of truss-core sandwich plates   总被引:1,自引:0,他引:1  
Truss-core sandwich plates have received much attention in virtue of the high values of strength-to-weight and stifness-to-weight as well as the great ability of impulseresistance recently. It is necessary to study the stability of sandwich panels under the influence of the thermal load. However, the sandwich plates are such complex threedimensional(3D) systems that direct analytical solutions do not exist, and the finite element method(FEM) cannot represent the relationship between structural parameters and mechanical properties well. In this paper, an equivalent homogeneous continuous plate is idealized by obtaining the efective bending and transverse shear stifness based on the characteristics of periodically distributed unit cells. The first order shear deformation theory for plates is used to derive the stability equation. The buckling temperature of a simply supported sandwich plate is given and verified by the FEM. The efect of related parameters on mechanical properties is investigated. The geometric parameters of the unit cell are optimized to attain the maximum buckling temperature. It is shown that the optimized sandwich plate can improve the resistance to thermal buckling significantly.  相似文献   

6.
An exact and a numerical solutions to the problem of a steady mixed convective MHD flow of an incompressible viscous electrically conducting fluid past an infinite vertical porous plate with combined heat and mass transfer are presented.A uniform magnetic field is assumed to be applied transversely to the direction of the flow with the consideration of the induced magnetic field with viscous and magnetic dissipations of energy.The porous plate is subjected to a constant suction velocity as well as a uniform mixed stream velocity.The governing equations are solved by the perturbation technique and a numerical method.The analytical expressions for the velocity field,the temperature field,the induced magnetic field,the skin-friction,and the rate of heat transfer at the plate are obtained.The numerical results are demonstrated graphically for various values of the parameters involved in the problem.The effects of the Hartmann number,the chemical reaction parameter,the magnetic Prandtl number,and the other parameters involved in the velocity field,the temperature field,the concentration field,and the induced magnetic field from the plate to the fluid are discussed.An increase in the heat source/sink or the Eckert number is found to strongly enhance the fluid velocity values.The induced magnetic field along the x-direction increases with the increase in the Hartmann number,the magnetic Prandtl number,the heat source/sink,and the viscous dissipation.It is found that the flow velocity,the fluid temperature,and the induced magnetic field decrease with the increase in the destructive chemical reaction.Applications of the study arise in the thermal plasma reactor modelling,the electromagnetic induction,the magnetohydrodynamic transport phenomena in chromatographic systems,and the magnetic field control of materials processing.  相似文献   

7.
In this paper, the method of composite expansion in perturbation theory is used for the solution of large deflection problem of thin circular plate. In this method. the outer field solution and the inner boundary layer solution are combined together to satisfy all the boundary conditions. In this paper, Hencky's membrane solution is used for the first approximation in outer field solution, and then the second approximate solution is obtained. The inner boundary layer solution is found on the bases of boundary layer coondinate. In this paper, the reciprocal ratio of maximum deflection and thickness of the plate is used as the small parameter. The results of this paper improves quite a bit in comparison with the results obtained in 1948 by Chien Wei-zang.  相似文献   

8.
The thin stiff films on pre-stretched compliant substrates can form wrinkles, which can be controlled in micro and nanoscale systems to generate smart structures. Recently, buck- led piezoelectric/ferroelectrie nanoribbons have been reported to show an enhancement in the piezoelectric effect and stretchability, which can be applied in energy harvesting devices, sensors and memory devices instead of polymeric polyvinylidine fluoride (PVDF). This paper studies the buckling and post-buckling process of ferroelectric thin films bonded to the pre-stretched soft layer, which in turn lies on a rigid support. Nonlinear electromechanical equations for the buckling of thin piezoelectric plates are deduced and employed to model the ferroelectric film poled in the thickness direction. Two buckling modes are analyzed and discussed: partially de-adhered buck- ling and fully adhered buckling. Transition from one buckling mode to the other is predicted and the effect of piezoelectricity on the critical buckling condition of piezoelectric film is examined.  相似文献   

9.
In this study, we proposed an analytical solution for eddy currents as well as electromagnetic forces of a conductive circular plate in a time varying magnetic field. Specifically, an analytical series solution for eddy currents in a circular plate subjected to an axisymmetrie time varying magnetic field has been proposed based on the T-method that has been widely used in the eddy current analysis of conductive and superconductive structures. Accordingly, the dynamic response, the dynamic instability and the magnetic damping of a circular plate in a transverse transient magnetic field as well as a stationary in-plane magnetic field have also been obtained. The analytical series solution proposed in this work as well as the subsequent numerical analysis not only confirmed the emergence of dynamic instability of a circular plate in a strong transverse magnetic field, but also demonstrated the existence of magneto-damping of a circular conductive plate in an in-plane magnetic field. The method developed in this paper provides a potential new possible way by which the analysis of the electromagnetic coupling problems of conductive structures can be simplified.  相似文献   

10.
In this paper we discuss the adoption of the anisotropic hardening model due to theexistence of Bauschinger effect when thin plate is applied by repeated loading.The loadingcondition of thin plates for linear kinematic hardening has been deduced in terms ofgeneralized forces and generalized plastic deformation.And it can be extended to nonlinearkinematic hardening and mixed hardening.Finally as an example the numerical results areobtained for a circular plate.  相似文献   

11.
软铁磁薄板磁弹性屈曲的理论模型   总被引:5,自引:0,他引:5  
周又和  郑晓静 《力学学报》1996,28(6):651-660
铁磁弹性薄板的磁弹性屈曲问题一直作为电磁——弹性力学相互作用的一个基本模型进行研究,而作用在其磁介质上的磁力计算则是定量理论预测准确与否的关键.到目前为止,文献上已有的理论模型对悬臂铁磁梁式悬臂板在横向磁场中磁弹性屈曲的理论预测值始终高于实验值,有的甚至相差100%左右.本文基于电磁力计算的微观安培电流模型,严格给出了软铁磁薄板等效横向磁力的宏观计算表达式.在此基础上,建立了电磁——力学相互耦合作用的非线性理论模型.该模型能描述铁磁薄板结构在非均匀横向磁场环境中的磁弹性失稳(或屈曲).其定量分析采用了有限元法和有限差分法相结合.数值结果显示:本模型给出的磁弹性屈曲的临界磁场值与实验值符合良好.与此同时,文中还对文献中认为较成功的Moon-Pao模型的基本假设进行了分析.定量结果发现:Moon-Pao理论模型的基本假设仅在梁式板的长厚比L/h比较大时(约在200左右),是可以接受的,而当L/h较小时,该假设将导致理论值与实验值的较大误差.L/h比值越小,理论值与实验值的误差越大  相似文献   

12.
基于双参数弹性基础模型,研究了梯度弹性基础上正交异性薄板的屈曲问题. 首先,基于能量法与变分原理,给出了梯度弹性基础上正交异性薄板的屈曲控制方程,并得到了梯度弹性基础刚度系数K1 与K2的计算式;进而,通过将位移函数采用三角函数展开的方法,给出了单向压缩载荷作用下、四边简支正交异性弹性基础板屈曲载荷的计算式;在算例中,通过将该文的解退化到单纯的正交异性板,并与经典弹性解比较,证明了理论的正确性;最后,求解了弹性模量在厚度方向上呈幂律分布的梯度基础上的薄板屈曲问题,分析了基础上下表层材料弹性模量比与体积分数指数对屈曲载荷的影响.  相似文献   

13.
As an essential model of magnetoelastic interaction between magnetic field and mechanical deformation, the study on magnetoelastic buckling phenomenon of soft ferromagnetic plates in a magnetic environment has been conducted. One of the key steps for the theoretical prediction of the critical magnetic field is how to formulate magnetic force exerted on the magnetized medium. Till today, the theoretical predictions, from theoretical models in publications, of the magnetoelastic buckling of ferromagnetic cantilevered beam-plate in transverse magnetic field are all higher than their experimental data. Sometimes, the discrepancy between them is as high as 100%. In this paper, the macroscope formulation of the magnetic forces is strictly obtained from the microscope Amperion current model. After that, a new theoretical model is established to describe the magnetoelastic buckling phenomenon of ferromagnetic thin plates with geometrically nonlinear deformation in a nonuniform transverse magnetic field. The numerical method for quantitative analysis is employed by combining the finite elemental method for magnetic fields and the finite difference method for deformation of plates. The numerical results obtained from this new theoretical model show that the theoretical predictions of critical values of the buckling magnetic field for the ferromagnetic cantilevered beam-plate are in excellent agreement with their experimental data. By the way, the region of applicability to the Moon-Pao's model, or the couple model, is checked by quantitative results. This project was supported in part by the National Natural Science Foundation of China and the Foundation of the SEdC of China for Returned Chinese Scholars from Abroad.  相似文献   

14.
Buckling and post-buckling behavior of a soft ferromagnetic beam-plate with unmovable simple supports under an applied magnetic field is analyzed by taking into account the non-linear effect of large deflections based on the von Karman model of plates. The study shows that buckling is proceeded by bending only if the applied magnetic field forms an incident angle with the normal of the plate. The characteristics of buckling and post-buckling are explored by numerical analysis. In particular, the numerical solution shows that, when the applied magnetic field is oblique, the plate snapps from a whole wave configuration into a half-wave configuration as buckling/snapping occurs, and that the magnetoelastic buckling strength increases with the increasing oblique angle.  相似文献   

15.
This paper does not stand alone; it is directly related to N.S. Christopherson's experimental study1,2 of the magnetoelastic bending of thin steel plates, presented at a recent SEM meeting. It is, in fact, an extension of that study and relies upon some of Christopherson's data.In 1968, Moon and Pao presented a theory of the magnetoelastic buckling of a beam plate in a uniform magnetic field which differed from experimental results by a factor of two. Attempts to explain the discrepancy still leave approximately 25-percent error in the theoretical results as compared with experiment.We show that the assumption made by Moon and Pao—that a plate element experiences a force system consisting only of a couple, whose magnitude is proportional to the rotation of the element—is invalid for finite plates. An experiment is suggested for determining whether the assumption is valid for infinite plates. The present state of knowledge concerning magnetoelastic buckling is briefly summarized. Several types of magnetoelastic buckling are identified and briefly contrasted. Attention is directed to the importance of field discontinuities in problems involving magnetic deformation. Two paradoxical aspects of the Moon-Pao formula for the magnetoelastic buckling of beam plates are pointed out and briefly discussed.  相似文献   

16.
This study investigates the elasto-plastic buckling behaviour of simply supported square and rectangular thin steel plates having elliptic cut-outs by means of finite element method. Plates with simply supported in the out-of-plane direction are applied uniform compression in long-edge direction. A50 steel was used in the analysis and the focus was on the effect of plate aspect ratio, elliptical hole size, elliptical hole angle, elliptical hole location and slenderness ratio on buckling behaviour. It was found in the study that as the plate slenderness ratio increases, the critical buckling stress decreases for all the perforated plates.  相似文献   

17.
着重评述了近20年来有关铁磁材料弹性薄板处在均匀横向外加磁场中发生屈曲这一新的磁-力耦合问题的理论与实验研究进展,在此基础上,介绍了笔者近年来围绕这一问题所开展的工作以及尚需进一步研究的几个问题。  相似文献   

18.
磁弹性簿板屈曲的研究进展和存在的若干问题   总被引:7,自引:1,他引:6  
周又和  郑晓静 《力学进展》1995,25(4):525-536
着重评述了近20年来有关铁磁材料弹性薄板处在均匀横向外加磁场中发生屈曲这一新的磁-力耦合问题的理论与实验研究进展,在此基础上,介绍了笔者近年来围绕这一问题所开展的工作以及尚需进一步研究的几个问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号