首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Digital image correlation (DIC) is assessed as a tool for measuring strains with high spatial resolution in woven-fiber ceramic matrix composites. Using results of mechanical tests on aluminum alloy specimens in various geometric configurations, guidelines are provided for selecting DIC test parameters to maximize the extent of correlation and to minimize errors in displacements and strains. The latter error is shown to be exacerbated by the presence of strain gradients. In a case study, the resulting guidelines are applied to the measurement of strain fields in a SiC/SiC composite comprising 2-D woven fiber. Sub-fiber tow resolution of strain and low strain error are achieved. The fiber weave architecture is seen to exert a significant influence over strain heterogeneity within the composite. Moreover, strain concentrations at tow crossovers lead to the formation of macroscopic cracks in adjacent longitudinal tows. Such cracks initially grow stably, subject to increasing app lied stress, but ultimately lead to composite rupture. Once cracking is evident, the composite response is couched in terms of displacements, since the computed strains lack physical meaning in the vicinity of cracks. DIC is used to identify the locations of these cracks (via displacement discontinuities) and to measure the crack opening displacement profiles as a function of applied stress.  相似文献   

2.
This paper presents the applications of digital image correlation technique to the mesoscopic damage and fracture study of some granular based composite materials including steelfiber reinforced concrete, sandstone and crystal-polymer composite. The deformation fields of the composite materials resulted from stress localization were obtained by the correlation computation of the surface images with loading steps and thus the related damage prediction and fracture parameters were evaluated. The correlation searching could be performed either directly based on the gray levels of the digital images or from the wavelet transform (WT) coefficients of the transform spectrum. The latter was developed by the authors and showed higher resolution and sensitivity to the singularity detection. Because the displacement components came from the rough surfaces of the composite materials without any coats of gratings or fringes of optical interferometry, both surface profiles and the deformation fields of the composites were visualized which was helpful to compare each other to analyze the damage of those heterogeneous materials. The project supported by the National Natural Science Foundation of China (10125211 and 10072002), the Scientific Committee of Yunnan Province for the Program of Steel Fiber Reinforced Concrete, and the Institute of Chemical Materials, CAEP at Mianyang  相似文献   

3.
In this work, a fiber composite model is developed to predict the time dependent stress transfer behavior due to fiber fractures, as driven by the viscoelastic behavior of the polymer matrix, and the initiation and propagation of inelastic zones. We validate this model using in situ, room temperature, micro-Raman spectroscopy fiber strain measurements. Multifiber composites were placed under constant load creep tests and the fiber strains were evaluated with time after one fiber break occurred. These composite specimens ranged in fiber volume fraction and strain level. Comparison between prediction and MRS measurements allows us to characterize key in situ material parameters, the critical matrix shear strain for inelastic zones and interfacial frictional slip shear stress. We find that the inelastic zone is predominately either shear yielding or interfacial slipping, and the type depends on the local fiber spacing.  相似文献   

4.
Detailed finite element implementation is presented for a recently developed technique (He et al., 2012) to characterize nonlinear shear stress–strain response and interlaminar shear strength based on short-beam shear test of unidirectional polymeric composites. The material characterization couples iterative three-dimensional finite element modeling for stress calculation with digital image correlation for strain evaluation. Extensive numerical experiments were conducted to examine the dependence of the measured shear behavior on specimen and test configurations. The numerical results demonstrate that consistent results can be achieved for specimens with various span-to-thickness ratios, supporting the accurate material properties for the carbon/epoxy composite under study.  相似文献   

5.
A systematic methodology for an accurate evaluation of various existing linearization procedures sustaining mean fields theories for nonlinear composites is proposed and applied to recent homogenization methods. It relies on the analysis of a periodic composite for which an exact resolution of both the original nonlinear homogenization problem and the linear homogenization problems associated with the chosen linear comparison composite (LCC) with an identical microstructure is possible. The effects of the sole linearization scheme can then be evaluated without ambiguity. This methodology is applied to three different two-phase materials in which the constitutive behavior of at least one constituent is nonlinear elastic (or viscoplastic): a reinforced composite, a material in which both phases are nonlinear and a porous material. Comparisons performed on these three materials between the considered homogenization schemes and the reference solution bear out the relevance and the performances of the modified second-order procedure introduced by Ponte Castañeda in terms of prediction of the effective responses. However, under the assumption that the field statistics (first and second moments) are given by the local fields in the LCC, all the recent nonlinear homogenization procedures still fail to provide an accurate enough estimate of the strain statistics, especially for composites with high contrast.  相似文献   

6.
Recent applications of moiré interferometry at VPI & SU and related developments of laboratory techniques are reviewed. The applications are studies of composite bodies, including micromechanics and macromechanics of composites, thermal strains and residual strains. The techniques section discusses steady-state thermal strain measurements, carrier fringes, and advances in methods for producing specimen gratings. With its high sensitivity, high spatial resolution and extensive displacement range, moiré interferometry has matured into a powerful technique for measuring inplane deformations of complex materials and structures.Invited paper was presented at the 1990 SEM Fall Conference on Hologram Interferometry and Speckle Metrology held in Baltimore, MD on November 5–8.  相似文献   

7.
The evolution of spatially resolved internal strain/stress during the manufacturing of thermoplastic composites and subsequent relaxation from water intake are evaluated using an in-situ fiber optic sensor corresponding to a coated optical glass fiber with a nominal diameter of 160 μm. Unidirectional carbon fiber-polyamide 6 composites are produced using compression molding with an embedded fiber optic for strain measurement. The distributed fiber optic based strain sensor is placed in an arrangement to capture 0, 45, and 90° strains in the composite to resolve in-plane strain tensor. Strains are monitored in the direction of fiber optic sensor along its length at high resolution during the various stages of compression molding process. Results indicate considerable internal strains leading to residual stress at the end of processing step along the off-axis (45°) and transverse (90°) directions, and small strains in the carbon fiber pre-preg (0°) direction. At the end of compression molding process, an average of 7000 and 10,000 compressive micro-strains are obtained for residual state of strain in the off-axis and transverse direction. Since water/moisture infusion affects the mechanical properties of polyamide-6 matrix resin, these composite panels with embedded sensors targeted for marine applications are monitored in a water bath at 40 °C simulating accelerated testing conditions. Using the same fiber optic sensor based technique, the strain relaxation was observed during water uptake demonstrating in-situ strain monitoring during both manufacturing and subsequent composite implementation/application environment. The technique presented in this paper shows the potential of optimizing time-temperature-pressure protocols typically utilized in thermoplastic manufacturing, and continuous life-cycle monitoring of composite materials using a small diameter and inexpensive distributed fiber optic sensing.  相似文献   

8.
The state of stress in and around reinforcements governs a number of physical processes in composite (multi-phase) materials, including the initiation of damage by either reinforcement cracking or interfacial decohesion. The stresses in the reinforcements have been observed to depend on the spatial distribution of the reinforcements, although the exact correlation is unclear. The present work determines the reinforcement stress for different reinforcement arrangements, ranging from a linear array of three uniformly spaced particles, to random and clustered microstructures. The stress calculations for elastic matrices were undertaken using a computationally efficient iterative technique. The technique was validated by comparing the results to finite element models, and the range of validity was determined. For the three-particle arrangements, the maximum reinforcement stress was observed when the particles were close to each other along the line of loading (a vertical arrangement). On the other hand, when the particle arrangement made a large angle with the loading direction, the reinforcement stress was low. Similar observations were recorded for the random and clustered arrangements where the location of the maximum reinforcement stress coincided with a vertical arrangement. The present work also develops a scheme for determining ‘representative volume elements’ for composite micromechanical models, based on the length scales of stress field interactions. These observations can be used to rationalize damage evolution mechanisms in commercial composites, and aid the development of physically based failure models for such materials.  相似文献   

9.
It is challenging to measure accurately and with high spatial resolution the local thermal strains in heterogeneous microstructures due of the complex nature of the thermal deformations and local boundary conditions. In the enclosed study, a digital image correlation (DIC) based, thermal strain mapping technique is described that is able to probe thermal deformations with sub-micron spatial resolution and sub-nanometer displacement accuracy for both homogeneous and heterogeneous materials, including cross-sections of IC packages. The full-field thermal deformation maps of different materials within a nanostructured IC chip cross-section are established from room temperature up to 160 °C, uncovering the heterogeneous nature of the specimen while accurately measuring the highly non-uniform displacement and strain fields across the multiple material constituents. As described in this work, the DIC-enabled technique is capable of high resolution mapping of local thermo-mechanical deformations in heterogeneous materials, providing a methodology that can improve our understanding of complex material systems under controlled thermal-environmental conditions.  相似文献   

10.
Moiré interferometry has been a valuable experimental technique for the understanding of the mechanical behavior of materials and structures. Over the last decade less emphasis has been placed on the development of the technique and more towards applications. This paper is a review article on recent applications using moiré interferometry in the fields of microelectronics devices, material characterization, micromechanics, residual stress, composite materials, fracture mechanics, and biomechanics. The general principles of moiré interferometry and advancement of techniques will not be discussed in this text, but references will be provided.  相似文献   

11.
A high-precision, Fizeau-type laser-interferometric dilatometer system has been developed for low-expansion composite materials. The strain resolution is about one microstrain. The system is automated to operate over a large temperature range and record data during the test. A technique has been developed to reduce the data in real time. The dilatometer system is described and thermal-expansion measurements for several fiber-reinforced and particle-filled composites are presented. Paper was presented at V International Congress on Experimental Mechanics held in Montreal, Quebec, Canada on June 10–15, 1984.  相似文献   

12.
碳纳米管、石墨烯和六方氮化硼等低维材料具有优异的力学和电学性质,已经引起广泛的科学兴趣。然而由电荷、分子轨道、电子结构和自旋态构成的低维材料的局域场与力学变形、机械运动和物理化学环境等外场间往往存在强烈耦合,这导致低维材料会呈现出新颖独特的物理力学性能。论文对近年来碳纳米管、石墨烯和六方氮化硼等低维材料的力学性能、力电耦合与器件原理、表面和界面结构性能调控、层间相互作用、能量耗散和摩擦等物理力学方面的研究进展进行了简要综述,并讨论了利用低维材料多场耦合特性和结构性能关联发展新型功能器件的方法和途径,以及纳米力学和纳尺度物理力学的前沿和发展趋势。  相似文献   

13.
Specific chemical environments step out in the industry objects. Portland cement composites (concrete and mortar) were impregnated by using the special polymerized sulfur and technical soot as a filler (polymer sulfur composite). Sulfur and technical soot was applied as the industrial waste. Portland cement composites were made of the same aggregate, cement and water. The process of special polymer sulfur composite applied as the industrial waste is a thermal treatment process in the temperature of about 150–155 \(^{\circ }\hbox {C}\). The result of such treatment is special polymer sulfur composite in a liquid state. This paper presents the plastic constants and coefficients of thermal expansion of special polymer sulfur composites, with isotropic porous matrix, reinforced by disoriented ellipsoidal inclusions with orthotropic symmetry of the thermoplastic properties. The investigations are based on the stochastic differential equations of solid mechanics. A model and algorithm for calculating the effective characteristics of special polymer sulfur composites are suggested. The effective thermoplastic characteristics of special polymer sulfur composites, with disoriented ellipsoidal inclusions, are calculated in two stages: First, the properties of materials with oriented inclusions are determined, and then effective constants of a composite with disoriented inclusions are determined on the basis of the Voigt or Rice scheme. A brief summary of new products related to special polymer sulfur composites is given as follows: Impregnation, repair, overlays and precast polymer concrete will be presented. Special polymer sulfur as polymer coating impregnation, which has received little attention in recent years, currently has some very interesting applications.  相似文献   

14.
针尖的化学物理力学研究   总被引:4,自引:2,他引:4  
郭万林  台国安  姜燕 《力学进展》2005,35(4):585-599
扫描探针显微镜的发明, 使人们了解纳米、分子和原子尺度的超微结构, 探测原子、分子间的力、电、磁及其复杂的物理和化学性质, 以及进行单原子、单分子操纵 成为现实. 本文从探针技术与表面化学物理力学耦合的角度出发, 首先对针尖的化学物理力 学研究领域进行了概述, 接着介绍了针尖的几种重要的化学修饰方法, 包括金属薄膜、自组 装单分子膜、胶体粒子及碳纳米管修饰; 然后以理论与实验结合的方式介绍了几个研究活跃 的领域: 表面力及分子间力(主要包括Van der Waals力, 双电层力, 憎水亲合力, Casimir力和单键力等)的理论描述与测量, 针尖的化 学物理力学在化学力滴定和表面化学识别等研究中的应用. 讨论了针尖与基底材料对测量力 的影响. 而这些复杂的原子、分子相互作用和物理、化学、力学及生物特性的实现均发生于 小小针尖上, 由此我们提出了``针尖力学'的概念. 并且指出多场(如电场、磁场、超声、 微波等)作用下, 针尖的化学物理力学研究将成为力学交叉学科研究的重点和热点.  相似文献   

15.
This paper discusses composite materials based on inorganic salts for medium- and high-temperature thermal energy storage application. The composites consist of a phase change material (PCM), a ceramic material, and a high thermal conductivity material. The ceramic material forms a microstructural skeleton for encapsulation of the PCM and structural stability of the composites; the high thermal conductivity material enhances the overall thermal conductivity of the composites. Using a eutectic salt of lithium and sodium carbonates as the PCM, magnesium oxide as the ceramic skeleton, and either graphite flakes or carbon nanotubes as the thermal conductivity enhancer, we produced composites with good physical and chemical stability and high thermal conductivity. We found that the wettability of the molten salt on the ceramic and carbon materials significantly affects the microstructure of the composites.  相似文献   

16.
This review is concerned with mechanics of continuous fiber composites. The earliest and most important advancements in the field are emphasized. No doubt the coverage is limited to some extent by the interests and experiences of the writer as well as time and space considerations. The advancements in mechanics of composites have been influenced to a great extent by the development of advanced composites through materials science. No attempt is made to discuss these developments. This review emphasizes the use of theoretical and applied mechanics in the development of theories, confirmed by experimentation, to predict the response of composite materials and structures. Citations have been given for many published works, but certainly not all. Apologies to those not listed; numerous additional references can be found in the works cited.  相似文献   

17.
Short duration stress pulses are of particular interest in determining the interfacial crack tip instability criteria for the dynamic fracture behavior of laminated carbon-fiber/epoxy composites. However, the heterogeneous architectures of laminated composites can alter the characteristics of a stress pulse as it propagates toward a crack tip. This makes it difficult to use standard dynamic testing techniques for characterizing these materials, since these techniques assume the characteristics of the stress pulse do not change as a result of propagation and can therefore be unambiguously determined from impact conditions. This paper presents a novel experimental technique that has been developed for characterizing short duration stress pulse propagation in laminated composite materials. In this technique, a dynamic moiré interferometer is used to capture fringe patterns corresponding to displacement fields associated with short duration stress pulses that were generated by impacting 0° and 90°/0°/90° carbon-fiber/epoxy composites with a magnetic flyer plate. Appropriate dynamic testing conditions for capturing high fidelity fringe patterns were determined using the recently developed dynamic moiré fringe contrast factor. The effects of the composite architecture on the propagation of short duration stress pulses observed with the dynamic moiré interferometer were confirmed by transient dynamic finite element analysis. From comparisons of experimental and numerical data, it was determined that the impact conditions for the magnetic flyer plate and laminated composite will not necessarily be planar, which has a significant effect on the intensity and duration of the propagating stress pulse.  相似文献   

18.
The phenomenon of fatigue is critical for designing structures including elements made of composite materials. The accurate prediction of the life and fatigue resistance of laminated composites is one of the subjects of inquiry in materials science. The ability of predicting the life of laminates is important for designing, operation, and safety analysis of a composite structure under specific conditions. To predict reliably the life of structures, it is necessary to know the mechanisms of cyclic deformation and damage. It is also necessary to develop a qualitative theory of fatigue failure that should be based on the concepts of solids mechanics. Developing such a theory requires to evaluate the microscopic parameters and the macroscopic variables of the material at the level of a laminate and the structure and to determine exactly the load modes acting on the system.  相似文献   

19.
Carbon nanotube fibers can be fabricated by the chemical vapor deposition spinning process. They are promising for a wide range of applications such as the building blocks of high-performance composite materials and micro-electrochemical sensors. Mechanical twisting is an effective means of enhancing the mechanical properties of carbon nanotube fibers during fabrication or by post processing. However, the effects of twisting on the mechanical properties remain an unsolved issue. In this paper, we present a two-scale damage mechanics model to quantitatively investigate the effects of twisting on the mechanical properties of carbon nanotube fibers. The numerical results demonstrate that the developed damage mechanics model can effectively describe the elastic and the plastic-like behaviors of carbon nanotube fibers during the tension process. A definite range of twisting which can effectively enhance the mechanical properties of carbon nanotube fiber is given. The results can be used to guide the mechanical twisting of carbon nanotube fibers to improve their properties and help optimize the mechanical performance of carbon nanotube-based materials.  相似文献   

20.
 A single-camera coupled particle tracking velocimetry–laser-induced fluorescence (PTV–LIF) technique and validation results from an experiment in a neutrally buoyant turbulent round jet are presented. The single-camera implementation allows the use of a 12-bit 60 frame-per-second 1024 × 1024 pixel digital CCD camera capable of streaming images in real time to hard disk resulting in very accurate PTV and LIF with excellent spatial and temporal resolution. The technique is capable of determining the turbulent scalar flux, as well as the Reynolds stress and mean and fluctuating velocity and concentration fields. Details of dye choice, corrections for attenuation due to dye, particles and water, photobleaching, vignetting, CCD calibration, and illumination power and geometry corrections are presented. Detailed results from the validation experiment confirm the accuracy and resolution of the technique, and in particular, the ability to measure . Bootstrap 95% uncertainty intervals are presented for the calculated statistics. Received: 28 July 2000/Accepted: 8 November 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号