首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
针对MEMS磁强计的精度无法满足姿态测量系统的航向角测量要求,对磁强计的误差来源进行了模型化分析,设计了一种基于自适应遗传算法的空间椭球磁强计校准方法.首先,采取自适应遗传算法,对磁强计测量的原始数据进行空间椭球的拟合,用估计的参数进行刻度系数、软磁干扰、硬磁干扰与零位偏置的综合误差补偿.其次,利用最小二乘法求解出非正交轴的方向余弦,进行非正交误差和安装误差的补偿.最后,将该方法应用到某姿态测量系统中,分别用未补偿和补偿后的数据进行姿态测量实验,实验结果表明该方法准确计算出磁强计的误差参数,使补偿后的航向角精度提高了6.8倍.  相似文献   

2.
针对MEMS磁强计的精度无法满足姿态测量系统的航向角测量要求,对磁强计的误差来源进行了模型化分析,设计了一种基于自适应遗传算法的空间椭球磁强计校准方法。首先,采取自适应遗传算法,对磁强计测量的原始数据进行空间椭球的拟合,用估计的参数进行刻度系数、软磁干扰、硬磁干扰与零位偏置的综合误差补偿。其次,利用最小二乘法求解出非正交轴的方向余弦,进行非正交误差和安装误差的补偿。最后,将该方法应用到某姿态测量系统中,分别用未补偿和补偿后的数据进行姿态测量实验,实验结果表明该方法准确计算出磁强计的误差参数,使补偿后的航向角精度提高了6.8倍。  相似文献   

3.
以低成本航姿测量系统为研究对象,针对四元数描述姿态时存在冗余的不足,提出使用三维独立矢量的修正的Rodrigues参数进行姿态解算,利用与其影子参数相互切换的方法解决了修正的Rodrigues参数在描述姿态时存在奇异的问题,根据系统中器件的特点,以陀螺零偏和修正的Rodrigues参数为状态向量,以加速度计、磁强计输出为观测向量建立了基于扩展Kalman滤波的姿态估计算法,避免了利用四元数进行姿态估计时状态误差方差阵产生奇异的问题,并在一定程度上减小了估计算法的计算量。最后通过全姿态以及摇摆基座数据仿真验证了算法的有效性。  相似文献   

4.
基于惯性器件和磁强计的测量信息,提出一种弹道导弹捷联惯导/地磁组合导航方法。以捷联惯导误差方程为基础建立系统的状态模型,以磁强计测量值与根据地磁场模型计算的地磁场强度值之差作为量测,只用一个观测表达式即同时包含载体的位置及姿态信息。引入状态反馈,利用混合校正的卡尔曼滤波得到系统导航信息的最优估计。仿真结果表明,该算法能有效抑制捷联解算误差的发散,磁强计精度为100 nT时,定位精度2.68 km,姿态精度优于5′。该导航方法完全自主,精度较高,具有一定工程应用价值。  相似文献   

5.
基于低成本MEMS惯性传感器的足绑式惯性导航系统(INS)和零速修正(ZUPT)算法广泛应用于行人导航中。由于MEMS惯性传感器零漂误差较大,零速修正时偏航角误差的可观测性差,INS偏航角误差不能被有效约束,成为行人导航的主要误差源。行人徒步行走特别是在室内楼道等结构化道路上行走时,行走的轨迹大多情况下可认为是近似直线,基于这个事实,提出了一种减小偏航角误差的算法,称为偏航角误差自观测(YESO)算法。当判定行人以近似直线徒步行走时,由行走轨迹计算出的航向角可近似认为是一个常值,那么由于各种误差引起该航向角发生变化时,可以将该变化量作为足绑式INS偏航角误差的观测量,进一步可利用卡尔曼滤波器估计出偏航角误差,对足绑式INS的偏航角进行校准。在室内楼道进行了约350 m的现场实验,实验验证了YESO算法的有效性。实验结果表明,当分别采用ZUPT和ZUPT+YSEO算法进行导航解算时,航向角误差从-29°减小到-2°,南北向最大位置误差从-35.5 m减小到-5.2 m。YESO算法的实现仅依靠系统自身的信息,没有增加额外的传感器,算法具有很好的工程实用价值并能方便地推广应用于车辆导航等领域。  相似文献   

6.
基于惯性传感器的行人导航系统定位精度随时间累积下降,根据捷联惯导理论和人体运动学特征,提出基于自适应步长约束的行人导航误差修正算法。所提算法首先利用零速检测划分行人运动区间,其次根据加速度信息利用自适应步长估计模型计算各区间内步长,最后通过零速修正与步长约束模型修正导航误差。实验将WT901BC姿态仪固定于行人脚跟,并围绕闭环路径行走进行算法验证。实验结果表明,相比于零速修正,经过自适应步长约束算法修正后,行进240 m后起点、终点间距离误差平均值由2.50 m下降至0.18 m,导航闭环误差平均值由1.04%D下降至0.07%D,有效提高行人导航系统的定位精度。  相似文献   

7.
微小卫星经常用磁强计作为姿态测量的主要部件,磁强计的测量精度是影响微小卫星定姿性能的重要指标。为提高磁场估计精度,采用太阳敏感器和陀螺对磁强计误差进行辅助测量与修正,推导了磁强计误差估计方法,在光照区以太阳敏感器与陀螺输出作为俯仰滤波器观测量,估计出卫星俯仰角度和角速度。再采用最小二乘方法,利用滤波输出量对磁强计误差进行估计,估计的结果进入滤波器对磁场输出进行测量修正。仿真表明该方法简单易行,姿态角精度提高了1°左右,角速度精度最高提高了0.003(°)/s左右,并增强了卫星稳定性,有利于成像等任务的完成,有效提高了微小卫星导航系统性能。  相似文献   

8.
为了满足低动态下天线稳定的要求,构建了一个基于微机械陀螺、加速度计和磁强计组合的动中通低成本姿态测量系统.该系统利用加速度计重力场分量估计的倾角和磁强计地磁场分量估计的航向角作为辅助信息,校正陀螺漂移误差.根据陀螺与辅助传感器的互补特性,设计一个多轴互补滤波器,利用陀螺的高频分量和辅助信息的低频分量估计姿态角.根据载体机动状态调整控制器参数,使滤波器能自适应选择交接频率,减小机动加速度对姿态估计的影响.实验结果表明,互补滤波能有效地估计出姿态,系统的动态估计精度在±2°内.  相似文献   

9.
基于自适应UKF算法的MEMS陀螺空中在线标定技术   总被引:2,自引:0,他引:2  
为保证微型卫星定位应用中系统精度与稳定性,需要对姿态传感器进行实时在线标定.在无外界姿态参考时,提出一种用三轴磁强计测量值来实时估计MEMs陀螺的零漂误差的方法,采用UKF滤波算法,将陀螺漂移作为滤波状态向量,通过建立三轴磁强计测量微分方程,作为系统量测方程实现陀螺漂移的最优估计.针对磁强计测量信息易受干扰导致滤波量测模型不准确的问题,将自适应因子引入到UKF中,通过在线监控和调整测量误差,减少陀螺标定的估计误差,增强系统性能.实验结果表明,经过标定,MEMS陀螺精度提高约30%,并且在磁强计有外界干扰时,陀螺的标定结果收敛.将标定后的MEMS陀螺进行姿态解算,其动态误差小于2°.  相似文献   

10.
一种单目视觉ORB-SLAM/INS组合导航方法   总被引:1,自引:0,他引:1  
针对惯性/卫星组合导航系统在卫星导航失效时无法使用的问题,提出了单目视觉ORB-SLAM/INS组合导航方法,用于扩展组合导航系统在强干扰环境和室内环境的应用范围。该算法分为两个阶段:初始化阶段,当ORB-SLAM形成闭环时设计算法在线估计单目视觉ORB-SLAM算法的尺度因子;导航阶段,ORB-SLAM系统输出的位置信息经过尺度变换后作为观测量进行卡尔曼滤波,估计INS导航系统的误差状态量从而修正惯导系统的误差。设计了硬件和软件平台对提出的组合导航方法进行试验验证。跑车实验结果表明:所设计的ORB-SLAM/INS组合导航系统具有较高的定位精度,导航时间6 min定位误差为1.162 m,且不随时间漂移,具有很强的应用价值。  相似文献   

11.
激光陀螺捷联惯导系统多位置标定方法   总被引:1,自引:0,他引:1  
在建立惯性仪表简化误差模型的基础上,提出了一种多位置标定方法.该方法充分考虑标定条件、设备以及时间等因素,设计了一种多位置连续转动标定方案,充分激励惯性仪表各项误差参数,从而建立起所有误差参数与系统导航误差之间的关系,通过测量每个位置静态导航状态下的速度误差,采用最小二乘估计,全面辨识出所有21个误差参数.理论分析和实验结果表明,与传统标定方法相比,该方法对标定设备要求低,无需北向基准,实现简单方便,在较短的时间内就可以一次标定出惯性仪表所有21个误差参数,标定精度与基于精密转台的标定精度相当,具有较强的工程实用性.  相似文献   

12.
利用ESO和TD进行的激光捷联惯组误差参数外场标定方法   总被引:3,自引:0,他引:3  
对外场条件下激光捷联惯组9个误差参数的标定问题进行了研究,包括加速度计零偏、加速度计标度因数误差以及陀螺零偏。对外场静基座条件下9个误差参数的可观测性进行了分析,并且从理论上推导出在不需要其他外界基准信息的前提下,仅根据导航速度误差和位置误差来完成9个误差参数标定的最少位置数,给出了一种利用扩张状态观测器(ESO)和跟踪微分器(TD)提取导航速度误差的微分信息,从而快速估计惯组9个误差参数的算法。用一组可行的多位置编排进行了惯组的9个误差参数标定的仿真验证,结果表明,该算法简单,精度高,易于在外场实现。  相似文献   

13.
针对低成本IMU的系统误差难以现场快速标定问题,提出了一种无需任何外部设备辅助的多位置旋转现场标定方法。该方法通过比力加速度与重力建立加速度计的误差模型,基于动态旋转以及标定后的加速度建立导航方程实现陀螺仪误差建模,使用改进的LM算法,实现低成本IMU误差参数的快速标定。实验结果表明:该方法可以有效地标定出加速度计和陀螺仪的安装误差、缩放因子和零偏误差,极大地简化了标定的过程,标定补偿后的IMU原始数据质量大幅提高,在100 s的静态导航试验中,x、y、z的定位精度分别从2541.547m、895.191m、7267.507m提升至80.229m、41.430m、99.832m。  相似文献   

14.
基于遗传算法的加速度计免转台标定方法   总被引:1,自引:0,他引:1  
针对现有的加速度计标定方法依赖于昂贵的仪器设备,导致标定成本高,提出一种低成本、操作简单的加速度计免转台标定方法。该方法通过对原始数据进行预处理,将标定问题转化为优化问题,采用遗传算法进行最优化求解得到补偿参数。通过对比试验得到:两种方法的标定相对误差在0.5%(标度因素)、3%(零偏);两种方法标定后通过加计姿态角提取的水平角误差在0.2°左右。结果表明,加速度计通过该方法经过补偿后,能够得到与传统转台标定方法相同数量级的测量精度,该方法可以有效替代传统标定方法,简化标定步骤,降低标定成本,具有重要的理论及使用价值。  相似文献   

15.
混合式光纤陀螺惯导系统在线自主标定   总被引:1,自引:0,他引:1  
混合式光纤陀螺惯导系统IMU的安装误差、光纤陀螺的漂移及标度因数等参数会随着时间发生变化,对系统误差产生影响,使系统在使用一段时间之后精度发生变化,因而需要重新标定。在混合式系统中,通过台体旋转调制,惯性元件常值漂移误差对系统的影响得到抑制,但安装误差和标度因数误差对系统的影响无法得到完全调制,这些误差会与地速及旋转角速率耦合,引起锯齿形速度误差,降低了系统的各项性能。针对混合式惯导系统,建立了IMU误差模型,设计出一种在线自主标定方法,并进行了可观性分析。该方法采用"速度+位置"匹配,对惯导系统30项相关误差项进行在线标定。系统实验结果表明,系统级在线标定参数较分立式标定参数在导航定位精度上提高了半个数量级。  相似文献   

16.
从标定算法误差和位置编排对标定精度的影响两个方面对外场激光惯组多位置标定方法的标定精度进行了分析。证明多位置标定中由粗对准姿态角代替精确姿态角所产生的误差为二阶小量,而对加表等效天向误差和陀螺等效北向误差的估计误差会直接影响标定精度。数学仿真表明对于加表零偏10-4g,加表标度因数10-4和陀螺零偏10-2 deg/h数量级的激光惯组,该多位置标定方法的估计精度高于相应误差参数本身2个数量级,说明该方法具有较高精度。在优化位置和非优化位置条件下,多位置标定方法精度的仿真结果在同一个数量级,说明该多位置标定方法对位置编排不敏感。  相似文献   

17.
基于隐马尔可夫模型的地磁匹配算法   总被引:2,自引:0,他引:2  
为了在地磁特征微弱区域内实现地磁辅助导航以及提高惯性导航系统在地磁特征明显区域内的定位精度,提出了基于隐马尔可夫模型的地磁匹配算法.首先以惯性导航系统定位误差为隐状态,以实时测量的地磁强度为观测量,建立了地磁匹配的隐马尔可夫模型;其次,针对该模型,使用Viterbi算法来确定最优状态序列,给出了惯性导航系统的当前定位误差.仿真结果表明,该算法可以实现地磁辅助导航,导航误差优于EKF算法,组合导航系统的定位误差在50 m左右.  相似文献   

18.
一种基于路径筛选的地形匹配算法   总被引:1,自引:1,他引:0  
为了减少传统的匹配算法过大的计算量,提高地形匹配算法的实时性和工程实用性,通过对地形辅助导航系统的总体技术研究,提出了一种基于路径筛选的新型地形匹配算法,利用地形斜率,在飞机飞行过程中不断筛选可能路径,直到找到唯一的正确路径,从而实现精确定位。此算法的优点在于:充分考虑了无线电高度表、大气高度表、数字地图的误差,因此在存在较大误差的工程实际中仍能精确定位;由于在飞行过程中不断排除不可能路径,因此计算量大大减少。通过实验室仿真证明,此算法精确可靠,可以对惯导系统的定位误差做出有效校正。  相似文献   

19.
磁罗经自差中含有不随磁纬度变化和随磁纬度变化两部分,而在某一纬度进行的自差校正仅消除了不随磁纬度变化的部分;随地理纬度或磁纬度变化导致的自差发生变化部分并没有得到有效的消除。因此,磁纬度变化在一定程度上影响了磁罗经的正常使用,必须对在完成一次自差校正后,自差系数能够适应的磁纬度范围进行研究。基于磁罗经自差理论中的泊松方程,分析和研究了直感式磁罗经由于磁纬度变化导致航向产生误差的问题,提出了在给定指向误差的前提条件下,建立了完成一个纬度上自差校正后自差系数的磁纬度适应范围的分析方法。理论分析和实测试验结果表明,所建立的自差系数与航向误差间关系,对于为把握自差校正时机和正确使用自差系数数据提供了可靠的理论依据。  相似文献   

20.
对单轴旋转惯导系统因旋转而引入的各项误差进行分析,研究其误差特性及补偿方法。针对单轴正反连续旋转方案,在假定惯性测试组件的器件误差和其他非旋转性的误差在精确标定的情况下,推导了因旋转轴安装不正交引起的涡动、轴系间隙引起的晃动、测角器件误差、旋转控制引起的换向超调误差、角位置、角速度不准确等因素而引起的误差的表现形式,定性和定量地分析了各误差对于系统精度的影响。针对对系统影响显著的旋转轴不正交误差,提出了一种基于系统自身旋转轴正反旋转的误差标定及补偿方法并进行了仿真实验。在给定条件下的仿真结果表明,该方法能够准确标定出旋转轴的不正交误差,标定精度达到角秒级。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号