首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 460 毫秒
1.
Exact solutions of the Navier-Stokes equations are investigated in the layer between parallel plates the distance between which changes proportionally to the square root of time. At the boundaries of the plates the no-slip condition is assigned. For approaching plates a countable family of exact solutions each of which continuously depends on the Reynolds number is obtained. At a sufficiently large Reynolds number, near the boundary a counterflow is formed: the velocity is directed oppositely to the average velocity. On the basis of the exact solution obtained, relative errors are calculated for the asymptotic theories of Reynolds lubricating layer and Prandtl boundary layer.  相似文献   

2.
This paper studies exact solutions of the Navier-Stokes equations for a layer between parallel plates the distance between which increases proportionally to the square root of time. A countable set of exact solutions and their derived countable set of continuous families of exact solutions are obtained. It is shown that certain intervals of the Reynolds parameter have two solutions and some of them one solution.  相似文献   

3.
Self-similar solutions are obtained in [1, 2] to the Navier-Stokes equations in gaps with completely porous boundaries and with Reynolds number tending to infinity. Approximate asymptotic solutions are also known for the Navier-Stokes equations for plane and annular gaps in the neighborhood of the line of spreading of the flow [3, 4]. A number of authors [5–8] have discovered and studied the effect of increase in the stability of a laminar flow regime in channels of the type considered and a significant increase in the Reynolds number of the transition from the laminar regime to the turbulent in comparison with the flow in a pipe with impermeable walls. In the present study a numerical solution is given to the system of Navier-Stokes equations for plane and annular gaps with a single porous boundary in the neighborhood of the line of spreading of the flow on a section in which the values of the local Reynolds number definitely do not exceed the critical values [5–8]. Generalized dependences are obtained for the coefficients of friction and heat transfer on the impermeable boundary. A comparison is made between the solutions so obtained and the exact solutions to the boundary layer equations.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 21–24, January–February, 1987.  相似文献   

4.
Two-dimensional hypersonic rarefied gas flow around blunt bodies is investigated for the continuum to free-molecular transition regime. In [1], as a result of an asymptotic analysis, three rarefied gas flow regimes, depending on the relationship between the problem parameters, were detected and one of these regimes was investigated. In the present study, asymptotic solutions of the thin viscous shock layer equations at small Reynolds numbers are obtained for the other two flow regimes. Analytical expressions for the heat transfer, friction and pressure coefficients are obtained as functions of the incident flow parameters and the body geometry and temperature. As the Reynolds number tends to zero, the values of these coefficients approach their values in free-molecular flow. The scaling parameters of hypersonic rarefied gas flow around bodies are determined for different regimes. The asymptotic solutions are compared with the results of direct Monte Carlo simulation.  相似文献   

5.
6.
Summary The steady laminar flow of a viscous incompressible fluid through a two-dimensional channel, having fluid sucked or injected with different velocities through its uniformly porous parallel walls is considered. A solution for small suction Reynolds number has been given by the authors in a previous paper. The purpose of this paper is to present a solution valid for large Reynolds numbers for the cases of (i) suction at both walls, and (ii) suction at one wall and injection at the other. A technique of matching outer and inner expansions is used to obtain an asymptotic solution for both of these cases. Further a perturbation solution for the case of suction at one wall and injection at the other is obtained by choosing the difference between two wall velocities as the perturbation parameter. Both asymptotic and perturbation solutions are confirmed by exact numerical solutions. As expected, the resulting solutions show the presence of the usual suction boundary layers in both types of flow considered in this paper.  相似文献   

7.
Linearized stability of incompressible viscous fluid flows in a thin spherical shell is studied by using the two-dimensional Navier–Stokes equations on a sphere. The stationary flow on the sphere has two singularities (a sink and a source) at the North and South poles of the sphere. We prove analytically for the linearized Navier–Stokes equations that the stationary flow is asymptotically stable. When the spherical layer is truncated between two symmetrical rings, we study eigenvalues of the linearized equations numerically by using power series solutions and show that the stationary flow remains asymptotically stable for all Reynolds numbers.   相似文献   

8.
In this paper, using the Lie symmetry analysis method, we study the ill-posed Boussinesq equation which arises in shallow water waves and non-linear lattices. The similarity reductions and exact solutions for the equation are obtained. Then the exact analytic solutions are considered by the power series method, and the physical significance of the solutions is considered from the transformation group point of view.  相似文献   

9.
We discuss the flow of BKZ fluids in an orthogonal rheometer. Some analytical results are proved, and numerical solutions are obtained for the Currie model. These solutions show a boundary layer behavior at high Reynolds numbers and the possibility of discontinuous solutions or nonexistence at high Weissenberg numbers.  相似文献   

10.
The decelerating effect of a homogeneous gravity field on the plane shock wave acceleration near the outside surface of a gas layer, initially in equilibrium, is analyzed within the framework of the self-similar formulation. A qualitative investigation is performed, the cases in which the first integrals exist are noted, and certain exact solutions of the problem are obtained at different power laws of the initial density variation.  相似文献   

11.
Hypersonic rarefied flow past blunt bodies is studied in the continuum-free-molecular transition regime. On the basis of an asymptotic analysis three rarefied gas flow patterns are established depending on the relation between the relevant parameters of the problem. In the first regime corresponding to a cold surface asymptotic solutions of the equations of a thin viscous shock layer are derived at low Reynolds numbers in the axisymmetric and plane cases. Simple analytical expressions for the pressure and the heat transfer and friction coefficients are obtained as functions of the freestream parameters and the body geometry. With decrease in the Reynolds number the coefficients approach the values corresponding to free-molecular flow. In this regime a similarity parameter for the hypersonic rarefied flow past bodies is determined. The asymptotic solutions are compared with numerical solutions and the results of direct statistical simulation by the Monte Carlo method.  相似文献   

12.
13.
We study boundary-layer turbulence using the Navier-Stokes-alpha model obtaining an extension of the Prandtl equations for the averaged flow in a turbulent boundary layer. In the case of a zero pressure gradient flow along a flat plate, we derive a nonlinear fifth-order ordinary differential equation, which is an extension of the Blasius equation. We study it analytically and prove the existence of a two-parameter family of solutions satisfying physical boundary conditions. Matching these parameters with the skin-friction coefficient and the Reynolds number based on momentum thickness, we get an agreement of the solutions with experimental data in the laminar and transitional boundary layers, as well as in the turbulent boundary layer for moderately large Reynolds numbers.  相似文献   

14.
In this paper, the influence of both the hydrodynamic and the thermal boundary layer on the solidification process of the flowing liquid on a cold plate is theoretically analyzed. Heat transfer between a frozen layer which is created and a laminar flowing liquid over that layer is considered. The development of the boundary layers and the relation between them on the solidification process are studied. An integral method for the solution of the boundary layer equations was used to obtain approximative solutions. The influence of the Prandtl and Reynolds number on the formation of the solid crust is shown and discussed for time dependent and steady-state solutions.  相似文献   

15.
An exact solution of the Navier–Stokes equations is obtained for the flow between two eccentric disks rotating with the same angular velocity and one of them executing non-torsional oscillations. An analytical solution describing the flow at large and small times after the start is given. The solutions depend on the ratio of the frequency of oscillation to the angular velocity of the disks and the ratio of the amplitude of oscillation to the angular velocity of the disks and to the distance between the axes of rotation, and the Reynolds number based on the distance between the disks and the angular velocity of the disks. The solutions for three cases when the angular velocity is greater than the frequency of oscillation or it is smaller than the frequency or it is equal to the frequency are discussed.  相似文献   

16.
利用Hankel变换及矩阵理论,获得了位于水平刚性基础上的弹性层在其内部受垂直于边界的集中力作用了的精确率,推广了已有的结论。Kelvin解,Mindlin解及弹性层表面受集中的用的解都是其特殊情形下的结论。  相似文献   

17.
Direct statistical simulation is employed to study the flow of a rarefied diatomic gas past a cylinder in the presence of an incident oblique shock. The distinctive features of the formation of a high-pressure compressed-gas jet in the case of interference between the oblique shock and the bow shock are studied for different Reynolds numbers. The variation of the pressure and the heat transfer to the surface with the shock position relative to the center of the cylinder, the Reynolds number, and the surface temperature is analyzed. The results obtained are compared with the experimental data and the results of the numerical solutions of the Euler and boundary layer equations. Free-molecular-to-continuum flow transition is demonstrated with reference to the example of interference-free flow past a cylinder.Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 5, 2004, pp. 171–180. Original Russian Text Copyright © 2004 by Gusev and Erofeev.  相似文献   

18.
Steady quasiperiodic solutions of the Navier-Stokes equations in an infinite two-dimensional layer with quasiperiodic boundaries are obtained on the Reynolds number range 0 < Re* < 200. The calculations are performed using a spectral-difference method based on the representation of the quasiperiodic solutions in the form of convergent double Fourier series. The properties of these solutions and the distinctive features of their spectra are studied and their fundamental differences from periodic solutions are shown. The possibility of applying the quasiperiodic solutions for modeling flows in fractal layers is discussed.  相似文献   

19.
通过把固支边上的边界位移函数作为状态变量引入状态方程,得到了含固支边矩形单层与叠层厚板的精确解. 在求解过程中,将非齐次状态方程的求解变为齐次状态方程的求解,省略了求解待定常数的中间过程,使求解过程变得简单. 所得到的解能够严格满足固支边界条件,在同一材料层内不需作分层处理,因而更加精确. 此外,对固支边的应力提出了新的计算方法,能够得到更精确的边界应力. 算例表明,本文解比现有精确解收敛快,与有限元解吻合的更好,尤其是在固支边处体现得更加明显.  相似文献   

20.
Arational asymptotic theory is proposed,which describes the turbulent dynamic and thermal boundary layer on a flat plate under zero pressure gradient. The fact that the flow depends on a finite number of governing parameters makes it possible to formulate algebraic closure conditions relating the turbulent shear stress and heat flux with the gradients of the averaged velocity and temperature. As a result of constructing an exact asymptotic solution of the boundary layer equations, the known laws of the wall for velocity and temperature, the velocity and temperature defect laws, and the expressions for the skin friction coefficient, Stanton number, and Reynolds analogy factor are obtained. The latter makes it possible to give two new formulations of the temperature defect law, one of which is identical to the velocity defect law and contains neither the Stanton number nor the turbulent Prandtl number, and the second formulation does not contain the skin friction coefficient. The heat transfer law is first obtained in the form of a universal functional relationship between three parameters: the Stanton number, the Reynolds number, and the molecular Prandtl number. The conclusions of the theory agree well with the known experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号