首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study experimentally investigates a turbulent jet in crossflow relevant to film cooling applications. The jet is inclined at 30°, and its mean velocity is the same as the crossflow. Magnetic resonance imaging is used to obtain the full three-dimensional velocity and concentration fields, whereas Reynolds stresses are obtained along selected planes by Particle Image Velocimetry. The critical role of the counter-rotating vortex pair in the mixing process is apparent from both velocity and concentration fields. The jet entrainment is not significantly higher than in an axisymmetric jet without crossflow, because the proximity of the wall inhibits the turbulent transport. Reynolds shear stresses correlate with velocity and concentration gradients, consistent with the fundamental assumptions of simple turbulence models. However the eddy viscosity is strongly anisotropic and non-homogeneous, being especially low along the leeward side of the jet close to injection. Turbulent diffusion acts to decouple mean velocity and concentration fields, as demonstrated by the drop in concentration flux within the streamtube issued from the hole. Volume-averaged turbulent diffusivity is calculated using a mass–flux balance across the streamtube emanating from the jet hole, and it is found to vary slowly in the streamwise direction. The data are compared with Reynolds-Averaged Navier–Stokes simulations with standard k  ε closure and an optimal turbulent Schmidt number. The computations underestimate the strength of the counter-rotating vortex pair, due to an overestimated eddy viscosity. On the other hand the entrainment is increasingly underpredicted downstream of injection. To capture the correct macroscopic trends, eddy viscosity and eddy diffusivity should vary spatially in different ways. Therefore a constant turbulent Schmidt number formulation is inadequate for this flow.  相似文献   

2.
Planar laser Rayleigh scattering (PLRS) from condensed CO2 particles is used to visualize flow structure in a Mach 5 wind tunnel undergoing unstart. Detailed flow features such as laminar/turbulent boundary layers and shockwaves are readily illustrated by the technique. A downstream transverse air jet, inducing flow unchoking downstream of the jet, is injected into the free stream flow of the tunnel, resulting in tunnel unstart. Time sequential PLRS images reveal that the boundary layer growth/separation on a surface with a thick turbulent boundary layer, initiated by the jet injection, propagates upstream and produces an oblique unstart shock. The tunnel unstarts upon the arrival of the shock at the inlet. In contrast, earlier flow separation on the opposite surface, initially supporting a thin laminar boundary layer, is observed when a jet induced bow shock strikes that surface. The resulting disturbance to this boundary layer also propagates upstream and precedes the formation of an unstart shock.  相似文献   

3.
This work is focused on the study of the impingement of a turbulent plane jet on a moving film. A computational fluid dynamics code has been used to simulate the interaction between the turbulent plane jet and the moving film. Since the problem of coupling between turbulence and free surface flow is poorly understood and experiments in this problem are difficult to carry out, this new numerical tool has been designed to give insight into global and local parameters of the free surface flow. To cite this article: D. Lacanette et al., C. R. Mecanique 333 (2005).  相似文献   

4.
The entrainment hypothesis was introduced by G.I. Taylor to describe one-dimensionally the development of turbulent jets issuing into a stagnant or coflowing environment. It relates the mass flow rate of surrounding fluid entrained into the jet to the characteristic velocity difference between the jet and the coflow. A model based on this hypothesis along with axial velocity assumed to follow a realistic Gaussian distribution is presented. It possesses an implicit analytical solution, and its results are compared and shown to be fully equivalent to previously published models that are rather based on a spreading hypothesis. All of them are found to be in agreement with experimental results, on a wide range of downstream positions and for various coflow intensities. To cite this article: N. Enjalbert et al., C. R. Mecanique 337 (2009).  相似文献   

5.
The effects of strong density variations on the dynamics of instabilities which develop in axisymmetric jets of pure air or pure helium are studied in the near field. By using LDV measurements associated with fast visualization techniques, space–time diagrams are built in order to show the evolution of the structures along the jets according to their Reynolds number and their density. In particular, the global character of the helium jet instabilities is highlighted. To cite this article: S. Boujemaa et al., C. R. Mecanique 332 (2004).  相似文献   

6.
Higher-order boundary layer theory is used to study the behaviour of nonisothermal laminar and turbulent free jet flows. In addition to the Prandtl boundary layer equations, an equation is used to describe the equilibrium of forces normal to the flow direction. This equilibrium exists between the buoyancy forces caused by gravity and the centrifugal forces resulting from the curvature in the flow. The proper selection of reference values permits the characteristics of the jet flow to be expressed as universal functions in which only the initial jet orientation and the Prandtl number in the case of laminar flow are input parameters. When the volume flow is given in addition to the momentum and thermal energy, the characteristic parameter are the Archimedes number for turbulent flow and the modified Archimedes number for laminar flow. The jet flow is calculated using an integral method in which the eddy viscosity and the turbulent Prandtl number are given as functions of the local Archimedes number. Comparison of experimental data from the literature and from our laboratory on nonisothermal free jets with the theoretical results, show satisfactory agreement. The universal diagrams given in the paper are valid forall plane laminar (Pr=0.7) and turbulent nonisothermal jets.  相似文献   

7.
The effect of flow separation and turbulence on the performance of a jet pump in oscillatory flows is investigated. A jet pump is a static device whose shape induces asymmetric hydrodynamic end effects when placed in an oscillatory flow. This will result in a time-averaged pressure drop which can be used to suppress acoustic streaming in closed-loop thermoacoustic devices. An experimental setup is used to measure the time-averaged pressure drop as well as the acoustic power dissipation across two different jet pump geometries in a pure oscillatory flow. The results are compared against published numerical results where flow separation was found to have a negative effect on the jet pump performance in a laminar flow. Using hot-wire anemometry the onset of flow separation is determined experimentally and the applicability of a critical Reynolds number for oscillatory pipe flows is confirmed for jet pump applications. It is found that turbulence can lead to a reduction of flow separation and hence, to an improvement in jet pump performance compared to laminar oscillatory flows.  相似文献   

8.
The nature of the instability governing the self-sustained tones produced by a low Mach number plane jet impinging on a slotted plate, known as slot-tone, is identified experimentally. For a given Reynolds number, the natural shear-layer and the jet column mode frequencies of the free jet delimit the values of the measured slot-tone operating frequencies. The oscillations at lower frequencies are the result of the amplification of the jet column mode, and those at higher frequencies correspond to the shear layer instabilities. To cite this article: A. Billon et al., C. R. Mecanique 332 (2004).  相似文献   

9.
The quadratic law of laminar flow through porous media at high Reynolds numbers, which is well confirmed by the multiple experimental data, is shown to give rise to three fundamental paradoxes. All them can be resolved by assuming the singular structure of flow. The singularity is produced by the formation of jet brunches which invade the stagnant zones and sharply loss their kinetic energy. The numerical simulation confirms this effect. To cite this article: M. Panfilov et al., C. R. Mecanique 331 (2003).  相似文献   

10.
The present experimental study reports on the efficiency of an alternate use of two actuators placed on either side of a plane jet, to increase lateral jet expansion and to enhance mixing. The investigation is carried out using particle image velocimetry (PIV). Compared to a continuous sinusoidal excitation on both sides of the plane jet, the jet widens considerably when the actuators are switched on alternately with a well chosen timing. An increase of the widening by a factor of two is achieved. The iso-intensity contours of the fluctuating velocity indicate that the high-fluctuation zone greatly spreads out. To cite this article: M. Ben Chiekh et al., C. R. Mecanique 331 (2003).  相似文献   

11.
It is known that surface non-thermal plasma actuators have proved their efficiency for aerodynamics flow control. In this study, a dielectric barrier discharge (DBD) is mounted on the diffuser of an axisymmetric turbulent air jet in order to control the flow separation along a 12-degree diffuser bevel. The momentum created by the actuator is applied to separate an air flow naturally attached to the diffuser for air flow velocity up to 40 m s−1. Laser sheet visualizations and LDV measurements are achieved to characterize the unforced and forced air jet. The flow separation, the induced velocity fluctuations, the jet mixing improvement and vectoring are investigated. The main results of this study demonstrate that DBD actuators are suitable to fully detach the air flow along the bevel for a velocity of 20 m s−1 and that a jet vectoring between 13.5° and 5.5° could be achieved for velocity ranging between 20 and 40 m s−1. Considerations about a potential improvement of the jet mixing are also introduced and the laser sheet visualization attests that induced flow perturbations are highly 3D.  相似文献   

12.
Large Eddy Simulations of a plane turbulent impinging jet have been carried out using the dynamic Smagorinsky model. The statistical results are first validated with the measurements from the literature: mean and turbulent quantities along the jet axis and at different vertical locations are presented. This study is completed by the analysis of the wall shear stress at the impingement wall. The effect of the jet Reynolds number (3000Re13500) on the kinematic development of the jet is also discussed. To cite this article: F. Beaubert, S. Viazzo, C. R. Mecanique 330 (2002) 803–810.  相似文献   

13.
Some types of mixed subgrid-scale (SGS) models combining an isotropic eddy-viscosity model and a scale-similarity model can be used to effectively improve the accuracy of large eddy simulation (LES) in predicting wall turbulence. Abe (2013) has recently proposed a stabilized mixed model that maintains its computational stability through a unique procedure that prevents the energy transfer between the grid-scale (GS) and SGS components induced by the scale-similarity term. At the same time, since this model can successfully predict the anisotropy of the SGS stress, the predictive performance, particularly at coarse grid resolutions, is remarkably improved in comparison with other mixed models. However, since the stabilized anisotropy-resolving SGS model includes a transport equation of the SGS turbulence energy, kSGS, containing a production term proportional to the square root of kSGS, its applicability to flows with both laminar and turbulent regions is not so high. This is because such a production term causes kSGS to self-reproduce. Consequently, the laminar–turbulent transition region predicted by this model depends on the inflow or initial condition of kSGS. To resolve these issues, in the present study, the mixed-timescale (MTS) SGS model proposed by Inagaki et al. (2005) is introduced into the stabilized mixed model as the isotropic eddy-viscosity part and the production term in the kSGS transport equation. In the MTS model, the SGS turbulence energy, kes, estimated by filtering the instantaneous flow field is used. Since the kes approaches zero by itself in the laminar flow region, the self-reproduction property brought about by using the conventional kSGS transport equation model is eliminated in this modified model. Therefore, this modification is expected to enhance the applicability of the model to flows with both laminar and turbulent regions. The model performance is tested in plane channel flows with different Reynolds numbers and in a backward-facing step flow. The results demonstrate that the proposed model successfully predicts a parabolic velocity profile under laminar flow conditions and reduces the dependence on the grid resolution to the same degree as the unmodified model by Abe (2013) for turbulent flow conditions. Moreover, it is shown that the present model is effective at transitional Reynolds numbers. Furthermore, the present model successfully provides accurate results for the backward-facing step flow with various grid resolutions. Thus, the proposed model is considered to be a refined anisotropy-resolving SGS model applicable to laminar, transitional, and turbulent flows.  相似文献   

14.
A variety of investigators have attempted to characterize the mechanisms of how reaction zones stabilize, or propagate, against incoming reactants, particularly in stable lifted jet flames both laminar and turbulent. In this paper, experiments are described that investigate the characteristics of upstream flame propagation in turbulent hydrocarbon jet flames. An axisymmetric, gaseous turbulent jet mixing in air has been selectively ignited at downstream positions to assess the upstream propagation of the bulk reaction zone. The farthest axial position that permitted the reaction zone to propagate upstream after application of the ignition source, referred to as the “upper propagation limit”, or UPL, is determined for a variety of jet and air co-flow parameters. There is an inverse relationship between the upper propagation limit position and the jet Reynolds number. Conversely, there is a direct relationship between the upper propagation limit and the co-flow velocity. Interpretation of the results is related to the velocity at the stoichiometric surface. Global discussion is made as to what these results imply about the stabilization and propagation of turbulent lifted jet flames.  相似文献   

15.
This work deals with the study of free surface and aspect ratio effects on the instability of the Taylor–Couette flow. The experimental results have been obtained using the polarographic technique. The time-averaged values of the wall velocity gradient have been determined and the spectral analysis of its fluctuations has been done. These first results show the existence of a critical height Hc of the liquid column. For an aspect ratio Γ=H/d<10, the laminar turbulent transition occurs without azimuthal wave mode. To cite this article: A. Madamdia et al., C. R. Mecanique 331 (2003).  相似文献   

16.
The flow distribution across automotive exhaust catalysts has a significant effect on their conversion efficiency. The exhaust gas is pulsating and flow distribution is a function of engine operating condition, namely speed (frequency) and load (flow rate). This study reports on flow measurements made across catalyst monoliths placed downstream of a wide-angled planar diffuser presented with pulsating flow. Cycle-resolved particle image velocimetry (PIV) measurements were made in the diffuser and hot wire anemometry (HWA) downstream of the monoliths. The ratio of pulse period to residence time within the diffuser (defined as the J factor) characterises the flow distribution. During acceleration the flow remained attached to the diffuser walls for some distance before separating near the diffuser inlet later in the cycle. Two cases with J  3.5 resulted in very similar flow fields with the flow able to reattach downstream of the separation bubbles. With J = 6.8 separation occurred earlier with the flow field resembling, at the time of deceleration, the steady flow field. Increasing J from 3.5 to 6.8 resulted in greater flow maldistribution within the monoliths; steady flow producing the highest maldistribution in all cases for the same Re.  相似文献   

17.
Results of a parametric study of unsteady laminar flows are analyzed. Three-dimensional unsteady equations of hydromechanics for a compressible medium are solved. The range of the characteristic Reynolds number Re = 400–900 is considered. It is demonstrated that the laminar flow in a plane channel ceases to be steady at Re = 415. As the Reynolds number increases, the unsteady processes become more intense, disturbances penetrate inward the channel, and separation zones lose their stability. In the vicinity of the channel exit, however, the flow tends to stabilize, though it remains unsteady. No transition to a turbulent flow occurs in the examined range of Reynolds numbers.  相似文献   

18.
A global noise reduction of a high-subsonic jet is achieved by experimental use of an impinging microjets system. The microjet velocity relative to the main jet velocity, the longitudinal distance of injection and the number of microjets are the three parameters examined in order to obtain the maximum noise reduction. This optimized microjet configuration is obtained by a balance between low-frequency attenuation and high-frequency noise generation due to the interaction between the microjets and the main jet mixing layer. To cite this article: T. Castelain et al., C. R. Mecanique 334 (2006).  相似文献   

19.
20.
A bounded vortex flow consists of an axisymmetric vortex that is confined top and bottom between two plates (the “confinement plate” and “impingement plate”, respectively) and surrounded laterally by a swirling annular slot jet. The bottom of the vortex terminates on the boundary layer along the impingement plate and the top of the vortex is drawn into a suction port positioned at the center of the confinement plate. The circumferential flow within the annular jet is important for supplying circulation to the central wall-normal vortex. This flow field is proposed as a method for mitigation of dust build-up on a surface, where the vortex–jet combination supplements the more traditional vacuum port by enhancing the surface shear stress and related particle transport rate. The paper reports on a computational study of the velocity field and particle transport by a bounded vortex flow. Fluid flow computations are performed using a finite-volume approach for an incompressible fluid and particle transport is simulated using a discrete-element method. Computations are performed for different values of two dimensionless parameters – the ratio of the plate separation distance and the average radial location of the jet inlet (the dimensionless confinement height) and the ratio of flow rate withdrawn at the suction outlet and that injected by the jet (the flow rate ratio). For small values of the flow rate ratio, the impinging jet streamlines pass down to the boundary layer along the bottom surface and then travel up the vortex core. By contrast, for large values of flow rate ratio, the annular jet is quickly entrained into the suction outlet and no wall-normal vortex is formed. Particles are observed to roll along the impingement surface in a direction determined by the fluid shear stress lines. Particles roll outward when they lie beyond a separatrix curve of the surface shear stress lines, where particles within this separatrix curve roll inward, piling up at the center of the flow field. A toroidal vortex ring forms for the small confinement height case with flow rate ratio equal to unity, which yields double separatrix curves in the shear stress lines. The inward rolling particles intermittently lift up due to collision forces and burst away from the impingement surface, eventually to become entrained into the flow out the suction port or resettling back onto the impingement surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号