首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
E. I. Saad 《Meccanica》2013,48(7):1747-1759
The quasisteady axisymmetrical flow of an incompressible viscous fluid past an assemblage of porous concentric spherical shell-in-cell model is studied. Boundary conditions on the cell surface that correspond to the Happel, Kuwabara, Kvashnin and Cunningham/Mehta-Morse models are considered. At the fluid-porous interfaces, the stress jump boundary condition for the tangential stresses along with continuity of normal stress and velocity components are employed. The Brinkman’s equation in the porous region and the Stokes equation for clear fluid are used. The hydrodynamic drag force acting on the porous shell by the external fluid in each of the four boundary conditions on the cell surface is evaluated. It is found that the normalized mobility of the particles (the hydrodynamic interaction among the porous shell particles) depends not only on the permeability of the porous shells and volume fraction of the porous shell particles, but also on the stress jump coefficient. As a limiting case, the drag force or mobility for a suspension of porous spherical shells reduces to those for suspensions of impermeable solid spheres and of porous spheres with jump.  相似文献   

2.
High-Velocity Laminar and Turbulent Flow in Porous Media   总被引:1,自引:0,他引:1  
We model high-velocity flow in porous media with the multiple scale homogenization technique and basic fluid mechanics. Momentum and mechanical energy theorems are derived. In idealized porous media inviscid irrotational flow in the pores and wall boundary layers give a pressure loss with a power of 3/2 in average velocity. This model has support from flow in simple model media. In complex media the flow separates from the solid surface. Pressure loss effects of flow separation, wall and free shear layers, pressure drag, flow tube velocity and developing flow are discussed by using phenomenological arguments. We propose that the square pressure loss in the laminar Forchheimer equation is caused by development of strong localized dissipation zones around flow separation, that is, in the viscous boundary layer in triple decks. For turbulent flow, the resulting pressure loss due to average dissipation is a power 2 term in velocity.  相似文献   

3.
High velocity flow in porous media   总被引:2,自引:0,他引:2  
  相似文献   

4.
The coupled flow problem of an incompressible axisymmetrical quasisteady motion of a porous sphere translating in a viscous fluid along the axis of a circular cylindrical pore is discussed using a combined analytical–numerical technique. At the fluid–porous interface, the stress jump boundary condition for the tangential stress along with continuity of normal stress and velocity components are employed. The flow through the porous particle is governed by the Brinkman model and the flow in the outside porous region is governed by Stokes equations. A general solution for the field equations in the clear region is constructed from the superposition of the fundamental solutions in both cylindrical and spherical coordinate systems. The boundary conditions are satisfied first at the cylindrical pore wall by the Fourier transforms and then on the surface of the porous particle by a collocation method. The collocation solutions for the normalized hydrodynamic drag force exerted by the clear fluid on the porous particle is calculated with good convergence for various values of the ratio of radii of the porous sphere and pore, the stress jump coefficient, and a coefficient that is proportional to the permeability. The shape effect of the cylindrical pore on the axial translation of the porous sphere is compared with that of the particle in a spherical cavity; it found that the porous particle in a circular cylindrical pore in general attains a lower hydrodynamic drag than in a spherical envelope.  相似文献   

5.
Axisymmetric viscous, two-dimensional steady and incompressible fluid flow past a solid sphere with porous shell at moderate Reynolds numbers is investigated numerically. There are two dimensionless parameters that govern the flow in this study: the Reynolds number based on the free stream fluid velocity and the diameter of the solid core, and the ratio of the porous shell thickness to the square root of its permeability. The flow in the free fluid region outside the shell is governed by the Navier–Stokes equation. The flow within the porous annulus region of the shell is governed by a Darcy model. Using a commercially available computational fluid dynamics (CFD) package, drag coefficient and separation angle have been computed for flow past a solid sphere with a porous shell for Reynolds numbers of 50, 100, and 200, and for porous parameter in the range of 0.025–2.5. In all simulation cases, the ratio of b/a was fixed at 1.5; i.e., the ratio of outer shell radius to the inner core radius. A parametric equation relating the drag coefficient and separation point with the Reynolds number and porosity parameter were obtained by multiple linear regression. In the limit of very high permeability, the computed drag coefficient as well as the separation angle approaches that for a solid sphere of radius a, as expected. In the limit of very low permeability, the computed total drag coefficient approaches that for a solid sphere of radius b, as expected. The simulation results are presented in terms of viscous drag coefficient, separation angles and total drag coefficient. It was found that the total drag coefficient around the solid sphere as well as the separation angle are strongly governed by the porous shell permeability as well as the Reynolds number. The separation point shifts toward the rear stagnation point as the shell permeability is increased. Separation angle and drag coefficient for the special case of a solid sphere of radius ra was found to be in good agreement with previous experimental results and with the standard drag curve.  相似文献   

6.
The modelling of viscous dissipation in a porous medium saturated by an incompressible fluid is discussed, for the case of Darcy, Forchheimer and Brinkman models. An apparent paradox relating to the effect of inertial effects on viscous dissipation is resolved, and some wider aspects of resistance to flow (concerning quadratic drag and cubic drag) in a porous medium are discussed. Criteria are given for the importance or otherwise of viscous dissipation in various situations.  相似文献   

7.
Creeping flow past an isolated, spherical and permeable aggregate has been studied adopting the Stokes equation to model the fluid external to the aggregate and the Brinkman equation for the internal flow. At the interface of the clear fluid and porous region stress jump boundary condition for tangential stresses is used along with the continuity of velocity components and continuity of the normal stress. Using Faxen’s laws, drag and torque are calculated for different flow conditions and it is observed that drag and torque not only change with the permeability of the porous region, but as stress jump coefficient increases, the rate of change in behavior of drag and torque increases.  相似文献   

8.
The problem of laminar flow of a viscous incompressible fluid in a finned circular tube is considered. A solution is obtained in the form of series in eigenfunctions of the Laplace operator; the coefficients in the series are found numerically. For the same problem, a simpler filtration approximation is proposed in which the system of fins is modeled by a radially inhomogeneous porous layer, and fluid flow in it is described by the Brinkman equation. A formula for the effective permeability of the porous medium is obtained by varying the number and height of fins. The formula provides an accurate evaluation of the mean flow velocity and viscous drag coefficient in finned channels.  相似文献   

9.
Results of numerical and experimental modeling of a supersonic flow (M = 4.85) around a model of a streamwise-aligned cylinder with a cellular-porous insert permeable for the gas on the frontal face of the cylinder are described. Experimental data on the influence of the pore structure and the length of the porous cylindrical insert on the model drag, pressure on the frontal face of the cylinder, and flow pattern are obtained. Numerical modeling includes solving Favre-averaged Navier-Stokes equations, which describe the motion of a viscous compressible heat-conducting gas. The system is supplemented with a source term taking into account the drag of the porous body within the framework of the continuum model of filtration. Data on pressure and velocity fields inside the porous body are obtained in calculations, and the shape of an effective pointed body whose drag is equal to the drag of the model considered is determined. The calculated results are compared with the measured data and schlieren visualization of the flow field.  相似文献   

10.
In this paper, the effects of viscous and Ohmic heating and heat generation/absorption on magnetohydrodynamic flow of an electrically conducting Casson thin film fluid over an unsteady horizontal stretching sheet in a non-Darcy porous medium are investigated. The fluid is assumed to slip along the boundary of the sheet. Similarity transformation is used to translate the governing partial differential equations into ordinary differential equations. A shooting technique in conjunction with the 4 th order Runge-Kutta method is used to solve the transformed equations. Computations are carried out for velocity and temperature of the fluid thin film along with local skin friction coefficient and local Nusselt number for a range of values of pertinent flow parameters. It is observed that the Casson parameter has the ability to enhance free surface velocity and film thickness, whereas the Forchheimer parameter, which is responsible for the inertial drag has an adverse effect on the fluid velocity inside the film. The velocity slip along the boundary tends to decrease the fluid velocity. This investigation has various applications in engineering and in practical problems such as very large scale integration(VLSI) of electronic chips and film coating.  相似文献   

11.
12.
The direct numerical simulation(DNS) is carried out for the incompressible viscous turbulent flows over an anisotropic porous wall. Effects of the anisotropic porous wall on turbulence modifications as well as on the turbulent drag reduction are investigated. The simulation is carried out at a friction Reynolds number of 180, which is based on the averaged friction velocity at the interface between the porous medium and the clear fluid domain. The depth of the porous layer ranges from 0.9 to 54 viscous units. The permeability in the spanwise direction is set to be lower than the other directions in the present simulation. The maximum drag reduction obtained is about 15.3% which occurs for a depth of 9 viscous units. The increasing of drag is addressed when the depth of the porous layer is more than 25 wall units. The thinner porous layer restricts the spanwise extension of the streamwise vortices which suppresses the bursting events near the wall. However, for the thicker porous layer, the wall-normal fluctuations are enhanced due to the weakening of the wall-blocking effect which can trigger strong turbulent structures near the wall.  相似文献   

13.
Viscous fluid flow induced by rotational-oscillatorymotion of a porous sphere submerged in the fluid is determined. The Darcy formula for the viscous medium drag is supplementedwith a term that allows for the medium motion. The medium motion is also included in the boundary conditions. Exact analytical solutions are obtained for the time-dependent Brinkman equation in the region inside the sphere and for the Navier–Stokes equations outside the body. The existence of internal transverse waves in the fluid is shown; in these waves the velocity is perpendicular to the wave propagation direction. The waves are standing inside the sphere and traveling outside of it. The particular cases of low and high oscillation frequencies are considered.  相似文献   

14.
A combined analytical?Cnumerical method is presented for the quasisteady axisymmetrical flow of an incompressible viscous fluid past an assemblage of porous eccentric spherical particle-in-cell models. The flow inside the porous particle is governed by the Brinkman model and the flow in the fictitious envelope region is governed by Stokes equations. In order to solve the Stokes equations for the flow field, a general solution is constructed from the superposition of the basic solutions in the two spherical coordinate systems based on both the porous particle and fictitious spherical envelope. Boundary conditions on the particle??s surface and fictitious spherical envelope that correspond to the Happel, Kuwabara, Kvashnin, and Cunningham/Mehta-Morse models are satisfied by a collocation technique. The drag of these eccentric porous particles relative to the drag experienced by a centered porous particle are investigated as functions of the effective distance between the center of the porous particle and the fictitious envelope, the volume ratio of the porous particle over the surrounding sphere and a coefficient that is proportional to the inverse of the permeability. In the limits of the motions of the porous particle in the concentric position with cell surface and near the cell surface with a small curvature, the numerical values of the normalized drag force are in good agreement with the available values in the literature.  相似文献   

15.
A study is made with an analysis of an incompressible viscous fluid flow past a slightly deformed porous sphere embedded in another porous medium. The Brinkman equations for the flow inside and outside the deformed porous sphere in their stream function formulations are used. Explicit expressions are investigated for both the inside and outside flow fields to the first order in small parameter characterizing the deformation. The flow through the porous oblate spheroid embedded in another porous medium is considered as the particular example of the deformed porous sphere embedded in another porous medium. The drag experienced by porous oblate spheroid in another porous medium is also evaluated. The dependence of drag coefficient and dimensionless shearing stress on the permeability parameter, viscosity ratio and deformation parameter for the porous oblate spheroid is presented graphically and discussed. Previous well-known results are then also deduced from the present analysis.  相似文献   

16.
This paper is concerned with the flow of two immiscible fluids through a porous horizontal channel. The fluid in the upper region is the micropolar fluid/the Eringen fluid, and the fluid in the lower region is the Newtonian viscous fluid. The flow is driven by a constant pressure gradient. The presence of micropolar fluids introduces additional rotational parameters. Also, the porous material considered in both regions has two different permeabilities. A direct method is used to obtain the analytical solution of the concerned problem. In the present problem, the effects of the couple stress, the micropolarity parameter, the viscosity ratio, and the permeability on the velocity profile and the microrotational velocity are discussed. It is found that all the physical parameters play an important role in controlling the translational velocity profile and the microrotational velocity. In addition, numerical values of the different flow parameters are computed. The effects of the different flow parameters on the flow rate and the wall shear stress are also discussed graphically.  相似文献   

17.
An analysis was made to investigate non-Darcian fully developed flow and heat transfer in a porous channel bounded by two parallel walls subjected to uniform heat flux. The Brinkmanextended Darcy model was employed to study the effect of the boundary viscous frictional drag on hydrodynamic and heat transfer characteristics. An exact expression has been derived for the Nusselt number under the uniform wall heat flux condition. Approximate results were also obtained by exploiting a momentum integral relation and an auxiliary relation implicit in the Brinkmanextended Darcy model. Excellent agreement was confirmed between the approximate and exact solutions even in details of velocity and temperature profiles.  相似文献   

18.
Stokes flow of a viscous, incompressible fluid past a porous sphere with an impermeable core using Darcy law for the flow in the porous region is discussed. The formulae for drag and torque are found by deriving the corresponding Faxen's laws. It is found that torque is always less than that on a solid sphere and it does not depend on the radius of the impermeable core. Some illustrative examples are discussed.  相似文献   

19.
This paper deals with a theoretical analysis of the transfer of reactive impurities by open and filtration flows of an incompressible viscous fluid. The first section of the paper studies the model of an inhomogeneous incompressible viscous fluid, which is widely used in meteorology and oceanology, with additional allowance for the drag of the magnetic field or porous medium. Another object of research in this paper is the model of filtration of an inhomogeneous incompressible fluid in porous media proposed by V. N. Monakhov (1977) (Section 2). In both models, hydrodynamic flows determine the motion of the mixture as a whole and the temperature and concentration distributions of the components of an inhomogeneous fluid are described by a common nonlinear system of equations of diffusive heat and mass transfer.Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 2, pp. 44–51, March–April, 2005.  相似文献   

20.
The porous-fluid interface encompasses a region bridging the flow inside a porous medium and a free-flowing fluid. In the context of volume-averaged simulations, it can be described by a set of gradually changing parameters defining the porous medium, mainly porosity and permeability. In this paper, both the permeability and the porous-induced drag force are evaluated a-priori, by explicitly filtering a set of Particle-Resolved Simulations (PRS) of the flow in the channel partially occupied by the porous medium. Different porous matrices are considered and the influence of the geometry and filtering parameters on the macroscopic quantities is studied. Especially, the focus is placed on the requirements for the kernel type and size to perform filtering accurately, and their impact on the distribution of permeability at the interface. The performance of the typically used models for the permeability is compared to the explicitly filtered results. Lastly, a new model for permeability and the drag force is introduced, taking into account the information about the filtering size and non-uniformity of the velocity field. The model greatly improves the prediction of velocity at the porous-fluid interface and serves as a proof of concept that a successful porous drag model should strive to include information about both parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号