首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The extended Brinkman Darcy model for momentum equations and an energy equation is used to calculate the unsteady natural convection Couette flow of a viscous incompressible heat generating/absorbing fluid in a vertical channel(formed by two infinite vertical and parallel plates) filled with the fluid-saturated porous medium.The flow is triggered by the asymmetric heating and the accelerated motion of one of the bounding plates.The governing equations are simplified by the reasonable dimensionless parameters and solved analytically by the Laplace transform techniques to obtain the closed form solutions of the velocity and temperature profiles.Then,the skin friction and the rate of heat transfer are consequently derived.It is noticed that,at different sections within the vertical channel,the fluid flow and the temperature profiles increase with time,which are both higher near the moving plate.In particular,increasing the gap between the plates increases the velocity and the temperature of the fluid,however,reduces the skin friction and the rate of heat transfer.  相似文献   

2.
This work is related to the flow of an electro-conducting Newtonian fluid presenting thermoelectric properties in the presence of magnetic field. The flow is considered to be governed an incompressible viscous fluid. The electro-conducting thermofluid equation heat transfer with one relaxation time is derived. The state space formulation developed in Ezzat (Can. J. Phys. Rev. 86:1242–1450, 2008) or one-dimensional problems is introduced. The Laplace transform technique is used. The resulting formulation is applied to a thermal shock problem; that is, a problem of a layer media and a problem for the infinite space in the presence of heat sources. A numerical method is employed for the inversion of the Laplace transforms. Numerical results are given and illustrated graphically for each problem. The effects of thermoelastic properties on the thermofluid flow are studied.  相似文献   

3.
In this work,a model of two-temperature generalized thermoelasticity without energy dissipation for an elastic half-space with constant elastic parameters is constructed.The Laplace transform and state-space techniques are used to obtain the general solution for any set of boundary conditions.The general solutions are applied to a specific problem of a half-space subjected to a moving heat source with a constant velocity.The inverse Laplace transforms are computed numerically,and the comparisons are shown in figures to estimate the effects of the heat source velocity and the two-temperature parameter.  相似文献   

4.
This article presents solutions for the transient heat and moisture transport due to both disk heat source and cylindrical heat source buried in an unsaturated half space. The solutions are presented in Hankel–Laplace transform domain and in dimensionless style. Coupled effect of thermally driven moisture transport is especially investigated because of its importance to alter the flow field in low-permeability medium. Parametric study has been performed to assess the effects of five independent dimensionless parameters on flow field. The stability and accuracy of the present solutions are demonstrated from the comparison between the results obtained from these solutions and those by using a well-established finite element code CODE_BRIGHT. Despite the simplified assumptions required in order to obtain analytical solutions in Hankel–Laplace transform domain, the results incorporate the main mechanisms involved in the coupled thermo-hydraulic (T-H) problem, and they may be eventually used for validation purposes.  相似文献   

5.
In this work we introduce a model of the boundary layer equations for a perfect conducting micropolar fluid with stretch, bounded by an infinite vertical flat plane surface of a constant temperature. This model is applied to study the effects of free convection currents on the flow of the fluid in the presence of a constant magnetic field. The state space technique is adopted for the solution of a one‐dimensional problem for any set of boundary conditions. The resulting formulation together with the Laplace transform techniques are applied to a thermal shock problem. The inversion of the Laplace transforms is carried out using a numerical approach. Numerical results are given and illustrated graphically for the problem. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents a hybrid graded element model for the transient heat conduction problem in functionally graded materials (FGMs). First, a Laplace transform approach is used to handle the time variable. Then, a fundamental solution in Laplace space for FGMs is constructed. Next, a hybrid graded element is formulated based on the obtained fundamental solution and a frame field. As a result, the graded properties of FGMs are naturally reflected by using the fundamental solution to interpolate the intra-element field. Further, Stefest’s algorithm is employed to convert the results in Laplace space back into the time-space domain. Finally, the performance of the proposed method is assessed by several benchmark examples. The results demonstrate well the efficiency and accuracy of the proposed method.  相似文献   

7.
A new mathematical model of electro-thermoelasticity has been constructed in the context of a new consideration of heat conduction with fractional order. The state space approach developed in Ezzat (2008) is adopted for the solution of one-dimensional problem in the presence of heat sources. The Laplace transform technique is used. A numerical method is employed for the inversion of the Laplace transforms. According to the numerical results and its graphs, conclusion about the new theory has been constructed. Some comparisons have been shown in figures to estimate the effects of the fractional order parameter on all the studied fields.  相似文献   

8.
A technique of the state space approach and the inversion of the Laplace transform method are applied to dimensionless equations of an unsteady one-dimensional boundary-layer flow due to heat and mass transfer through a porous medium saturated with a viscoelastic fluid bounded by an infinite vertical plate in the presence of a uniform magnetic field is described. Complete analytical solutions for the temperature, concentration, velocity, and induced magnetic and electric fields are presented. The inversion of the Laplace transforms is carried out by using a numerical approach. The proposed method is used to solve two problems: boundary-layer flow in a viscoelastic fluid near a vertical wall subjected to the initial conditions of a stepwise temperature and concentration and viscoelastic fluid flow between two vertical walls. The solutions are found to be dependent on the governing parameters including the Prandtl number, the Schmidt number, the Grashof number, reaction rate coefficient, viscoelastic parameter, and permeability of the porous medium. Effects of these major parameters on the transport behavior are investigated methodically, and typical results are illustrated to reveal the tendency of the solutions. Representative results are presented for the velocity, temperature, concentration, and induced magnetic and electric field distributions, as well as the local skin-friction coefficient and the local Nusselt and Sherwood numbers.  相似文献   

9.
广义Maxwell黏弹性流体在两平板间的非定常流动   总被引:2,自引:0,他引:2  
将分数阶微积分运算引入Maxwell黏弹性流体的本构方程,研究了黏弹性流体在两平板问的非定常流动.对于广义Maxwell黏弹性流体的分数阶导数模型,导出了对时间具有分数阶导数的特殊运动方程,利用分数阶微积分的Laplace变换理论,得到了流动的解析解.  相似文献   

10.
In this paper, the thermo-poroelasticity theory is used to investigate the quasi-static response of temperatures, pore pressure, stress, displacement, and fluid flux around a cylindrical borehole subjected to impact thermal and mechanical loadings in an infinite saturated poroelastic medium. It has been reported in literatures that coupled flow known as thermo-osmosis by which flux is driven by temperature gradient, can significantly change the fluid flux in clay, argillaceous and many other porous materials whose permeability coefficients are very small. This study presents a mathematical model to investigate the coupled effect of thermo-osmosis in saturated porous medium. The energy balance equations presented here fulfill local thermal non-equilibrium condition (LTNE) which is different from the local thermal equilibrium transfer theory, accounting for that temperatures of solid and fluid phases are not the same and governed by different heat transfer equations. Analytical solutions of temperatures, pore pressure, stress, displacement, and fluid flux are obtained in Laplace transform space. Numerical results for a typical clay are used to investigate the effect of thermo-osmosis. The effects of LTNE on temperatures, pore pressure, and stress are also studied in this paper.  相似文献   

11.
基于应力平衡条件、渗流连续方程、能量守恒方程,考虑土颗粒和孔隙水热膨胀系数的不同,建立考虑热水力耦合的饱和土体三维热固结控制方程。利用傅里叶变换和拉普拉斯变换导出变换域上的控制方程,解得点热源在变换域和实数域上的解析解,再利用区域积分给出两平行圆柱形热源热固结土体温度、孔压、位移的解析解,并对其进行分析,发现径距比增大会导致两热源温度相互影响程度减弱,热固结系数减小会导致孔压和位移的峰值增大。  相似文献   

12.
This note presents transient motion of a viscous and incompressible fluid in a vertical channel due to free convective currents occuring as a result of application of constant heat flux at one wall and constant temperature on other wall. The method of Laplace transform is used to solve the problem. The transient behaviour of flow on velocity and temperature fields are shown on the graphs.  相似文献   

13.
The two-dimensional problem for a half space whose surface is traction free and subjected to the effects of heat sources is considered within the context of the theory of thermoelasticity with two relaxation times. Laplace and Fourier transform techniques are used. The solution in the transformed domain is obtained by using a direct approach. Numerical inversion of both transforms is carried out to obtain the temperature, stress and displacement distributions in the physical domain. Numerical results are represented graphically and discussed.  相似文献   

14.
The fractional calculus approach is introduced into the seepage mechanics. A three-dimensional relaxation model of viscoelastic fluid is built. The models based on four boundary conditions of exact solution in Laplace space for some unsteady flows in an infinite reservoir is obtained by using the Laplace transform and Fourier sine and cosine integral transform. The pressure transient behavior of non-Newtonian viscoelastic fluid is studied by using Stehfest method of the numerical Laplace transform inversion and Gauss–Laguerre numerical integral formulae. The viscoelastic fluid is very sensitive to the order of the fractional derivative. The change rules of pressure are discussed when the parameters of the models change. The plots of type pressure curves are given, and the results can be provided to theoretical basis and well-test method for oil field.  相似文献   

15.
This study concentrates on the unsteady magnetohydrodynamics (MHD) rotating flow of an incompressible generalized Burgers’s fluid past a suddenly moved plate through a porous medium. Modified Darcy’s law for generalized Burgers’s fluid in a rotating frame has been used to model the governing flow problem. The closed form solution of the governing flow problem has been obtained by employing Laplace transform technique. The integral appearing in the inverse Laplace transform has been evaluated numerically. The influence of various parameters on the velocity profile has been delineated through several graphs and discussed in detail. It was found that the fluid is decelerated with increasing Hartmann number M and porosity parameter K. However, for large Hall parameter m, the real part of velocity decreases and the imaginary part of velocity increases.  相似文献   

16.
This paper investigates the unsteady hydromagnetic Couette fluid flow through a porous medium between two infinite horizontal plates induced by the non-torsional oscillations of one of the plates in a rotating system using boundary layer approximation. The fluid is assumed to be Newtonian and incompressible. Laplace transform technique is adopted to obtain a unified solution of the velocity fields. Such a flow model is of great interest, not only for its theoretical significance, but also for its wide applications to geophysics and engineering. Analytical expressions for the steady state velocity and shear stress on the plates are obtained, and the case of single oscillating plate is also discussed. The influence of pertinent parameters on the flow is delineated, and appropriate conclusions are drawn.  相似文献   

17.
E. A. Ashmawy 《Meccanica》2012,47(8):1903-1912
In the present work, we investigate the creeping unsteady motion of an infinite micropolar fluid flow past a fixed sphere. The technique of Laplace transform is used. The drag formula is obtained in the physical domain analytically by using the complex inversion formula of the Laplace transform. The well known formula of Basset for the drag on a sphere placed in an unsteady viscous fluid flow and that of Ramkissoon and Majumdar for steady motion in the case of micropolar fluids are recovered as special cases. The obtained formula is employed to calculate the drag force for some micropolar fluid flows. Numerical results are obtained and represented graphically.  相似文献   

18.
In order to evaluate uncertainties in computational fluid dynamics (CFD) computations of the stagnation point heat flux, a physical criterion is developed. Based on a quasi-one-dimensional hypothesis along the stagnation line, a new stagnation flow model is applied to obtain the governing equations of the flow near the stagnation point at hypersonic speeds. From the above equations, the compatibility relations are given at the stagnation point and along the stagnation line, which consist of the physical criterion for checking the accuracy in the stagnation point heat flux computations. The verification of the criterion is made with various numerical results.  相似文献   

19.
This article deals with the various heat source responses in a transversely isotropic hollow cylinder under the purview of three-phase-lag (TPL) generalized thermoelasticity theory. In presence of magnetic field and due to the rotating behavior of the cylinder, the governing equations are redefined for generalized thermoelasticity with thermal time delay. In order to obtain the stress, displacement and temperature field, the field functions are expressed in terms of modified Bessel functions in Laplace transformed domain. When the outer radius of hollow cylinder tends to infinity, the corresponding results are discussed. Finally an appropriate Laplace transform inversion technique is adopted.  相似文献   

20.
We present an analytical solution of axisymmetric motion for a Bingham fluid initially at rest subjected to a constant pressure gradient applied suddenly. Using the Laplace transform, we obtain expressions which allow the calculation of the instantaneous velocity, plug radius and rate of flow as a function of time. We also give a relation for the shear stress in the plug and in the region where the behaviour of the fluid is Newtonian.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号