首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
 The flow of a `model' lyotropic liquid crystal polymer, (hydroxypropyl)cellulose in water, through a rectangular channel with a divergence in the channel width, is studied by in situ light microscopy. Microscopic texture observations are related to measurements of the flow velocity field, in order to characterize the shear and elongational aspects of the flow and to examine the effects of the divergence from a narrow channel to a wide channel. A strong dependence of flow-induced texture on position in the channel is observed and is related to the interplay of shear and elongational strain. The divergence generates both a perpendicular elongational strain due to the widening of the channel, and subsequently an elongational strain along the flow direction due to the change in flow pattern from quasi-radial to unidirectional down the wide channel. Additionally side wall structure is observed to be more complex than a simple strong alignment, displaying a fine birefringent texture. Finally there is a marked dependence of the macroscopic structure on the strain history of the fluid prior to entry into the channel, indicating that very different structures of, for instance, moulded parts, can result from differences in geometry and fluid treatment prior to entry into the mould itself. Received: 12 October 1999/Accepted: 29 October 1999  相似文献   

2.
A continuum constitutive theory of corotational derivative type is developed for the anisotropic viscoelastic fluid–liquid crystalline (LC) polymers. A concept of anisotropic viscoelastic simple fluid is introduced. The stress tensor instead of the velocity gradient tensor D in the classic Leslie–Ericksen theory is described by the first Rivlin–Ericksen tensor A and a spin tensor W measured with respect to a co-rotational coordinate system. A model LCP-H on this theory is proposed and the characteristic unsymmetric behaviour of the shear stress is predicted for LC polymer liquids. Two shear stresses thereby in shear flow of LC polymer liquids lead to internal vortex flow and rotational flow. The conclusion could be of theoretical meaning for the modern liquid crystalline display technology. By using the equation, extrusion–extensional flows of the fluid are studied for fiber spinning of LC polymer melts, the elongational viscosity vs. extension rate with variation of shear rate is given in figures. A considerable increase of elongational viscosity and bifurcation behaviour are observed when the orientational motion of the director vector is considered. The contraction of extrudate of LC polymer melts is caused by the high elongational viscosity. For anisotropic viscoelastic fluids, an important advance has been made in the investigation on the constitutive equation on the basis of which a series of new anisotropic non-Newtonian fluid problems can be addressed. The project supported by the National Natural Science Foundation of China (10372100, 19832050) (Key project). The English text was polished by Yunming Chen.  相似文献   

3.
A laser anemometer has been used to study the developing flow both upstream and downstream from the entry plane in a re-entrant tube geometry. A 0.75% polyacrylamide/water solution was used and Reynolds numbers (based on wall conditions in the fully developed downstream flow) in the range 100–500 were obtained in 1.82-cm and 2.40-cm-diameter tubes.The shear stress-shear rate relationship for the fluid was measured using a cone and plate geometry in conjunction with a Weissenberg rheogoniometer. Theoretical fully developed velocity profiles were calculated numerically from these measurements. The measured fully developed velocity profiles were found to be in excellent agreement with those calculated.Velocity profiles measured at the tube entry plane showed the pronounced wall region distortion typically predicted by recent numerical solutions of the flow of purely-viscous fluids through an abrupt tube contraction.It was found that the major velocity rearrangements were achieved within only a few diameters (both upstream and downstream) of the entry plane. In particular, the velocity distribution near the tube wall varied negligibly over the relatively longer distance (many diameters) that it took for the centreline velocity to achieve its fully developed value. Entry lengths were found to be only about half those for purely-viscous fluids.Calculation of the time of flight along the central streamline confirmed that the major rearrangements of velocity suffered by the fluid occurred over a relatively short time period. This indicates that hereditary integral constitutive equations may have to be used in theoretical analyses of this type of flow situation.  相似文献   

4.
 We have studied by in situ microscopy the flow of a lyotropic liquid crystal polymer, hydroxypropylcellulose (HPC) in water, around an obstacle placed in a rectangular flow channel. The obstacle separates the flow into two parts which rejoin downstream of the obstacle, resulting in the formation of a `weld-line'. Measuring the velocity field in the vicinity of the weld-line beyond the obstacle, we find as expected a positive elongational strain (acceleration) along the weld (parallel to the flow direction). For an anisotropic (concentrated) HPC solution we observe in addition a significant shear strain in the weld-line region, there being an important velocity gradient perpendicular to the plane of the weld line. Isotropic (lower concentration) solutions of the same polymer demonstrate no visible weld line, a larger elongational strain rate near the obstacle, and no shear component of strain downstream of the obstacle. These results are similar to observations reported for fluids reinforced by macroscopic fibres. Polarised light observations of the anisotropic solution show that the strain field generates a generally increased degree of orientation of the liquid crytalline polymer near the weld (generally reduced crossed-polariser transmitted intensity when the polariser is parallel to the flow direction), however there is also a striking fine birefringent colour variation in the weld-line region, reminiscent of the structure observed at the channel side walls in rectangular channel flow (Haw and Navard 2000). The results show that the simple concept of weld-line structure as confined to an enhanced alignment along the weld due to elongational strain is incomplete; the two-dimensional shear strain field must also be taken into account for the anisotropic fluid. Received: 22 December 1999/Accepted: 4 January 2000  相似文献   

5.
Numerical simulations have been undertaken for the creeping entry flow of a well-characterized polymer melt (IUPAC-LDPE) in a 4:1 axisymmetric and a 14:1 planar contraction. The fluid has been modeled using an integral constitutive equation of the K-BKZ type with a spectrum of relaxation times (Papanastasiou–Scriven–Macosko or PSM model). Numerical values for the constants appearing in the equation have been obtained from fitting shear viscosity and normal stress data as measured in shear and elongational data from uniaxial elongation experiments. The numerical solutions show that in the axisymmetric contraction the vortex in the reservoir first increases with increasing flow rate (or apparent shear rate), goes through a maximum and then decreases following the behavior of the uniaxial elongational viscosity. For the planar contraction, the vortex diminishes monotonically with increasing flow rate following the planar extensional viscosity. This kinematic behavior is not in agreement with recent experiments. The PSM strain-memory function of the model is then modified to account for strain-hardening in planar extension. Then the vortex pattern shows an increase in both axisymmetric and planar flows. The results for planar flow are compared with recent experiments showing the correct trend.  相似文献   

6.
The start-up flow of polymeric solutions in an abrupt contraction channel with a rectangular cross-section was experimentally studied. Aqueous solutions with 0.2 wt% and 1.0 wt% of polyacrylamide were used as test fluids. Temporal changes in velocity were measured with a laser Doppler velocimeter. The velocity overshot just after the onset of the flow. The changes in velocity caused by the rearrangement of the velocity distribution were observed. A three-dimensional flow structure and the development of a vortex region were found near the entrance to the contraction. A decrease in the axial velocity just upstream from the contraction was observed. The velocity profile is related to the three-dimensional nature of the flow and the elongational rheological properties of the test fluid. The experimental results indicate that three-dimensional analysis of viscoelastic flows is required especially for the flow in rectangular channels. Received: 6 July 1998 Accepted: 1 December 1998  相似文献   

7.
A low cost, low power laser-speckle photographic technique has been developed and is duscussed for the measurement of point velocities in slow laminar flows. The technique is particularly suitable for axisymmetric flows where the two velocity components can be easily measured. The accuracy of the technique is established by measurement of the velocity distribution for Poiseuille flow and from data obtained for acceleration of an inelastic Newtonian fluid through a four-to-one circular contraction. Preliminary results are also presented in the contracting flow field for a non shear-thinning highly elastic fluid. These data are particularly significant for verification of finite element numerical solutions currently being developed for viscoelastic fluids in circular entry flows.  相似文献   

8.
A laser anemometer has been used to study the region of accelerating shear flow near the exit of a vertical tube. It is in this region that the transition between steady laminar shear flow in the upstream tube and elongational flow in the downstream liquid jet takes place.Downstream velocity profiles were measured for solutions of 0.9% polyacrylamide in 85% glycerol/water and 0.9% polyacrylamide in water. Reynolds numbers (based on wall conditions in the fully developed upstream flow) ranged from 45 to 310 and Froude numbers from 0.294 to 4.11. Tubes, having sharpedged and rounded exit corners, with diameters of 1.25 cm and 1.90 cm were usedUpstream velocity profiles were measured for a solution of 0.9% polyacrylamide in water. Reynolds numbers ranged from 16 to 670. Only tubes having sharp-edged exit corners were used.It was found that the transition region did not extend upstream into the tube but was confined to the downstream jet. The transition took place over a distance of about 3–5 tube diameters depending upon the value of the Froude number. The axial distance downstream from the tube exit plane at which the velocity profile first became flat increased with increasing Froude number. The magnitude of the jet velocity at this point decreased with increasing Froude number.The condition of the tube exit corner was found to influence the flow in the transition region. Downstream velocity profiles obtained using tubes having rounded exit corners initially develop more slowly than, but soon catch up with and eventually overtake, the corresponding profiles obtained using tubes with sharp-edged exit corners.Downstream velocity profiles obtained for the 0.9% polyacrylamide in 85% glycerol/water solution were found to develop smoothly. The transition from steady shear flow in the tube to elongational flow in the jet took place through the combined processes of acceleration of the outer layers of the jet due to radial transfer of momentum with adjacent inner layers, the process spreading steadily inwards with increasing axial distance from the tube exit plane, and acceleration of the whole due to gravity. However, the velocity profiles obtained for the 0.9% polyacrylamide in water solution did not always develop so smoothly. At a Reynolds number of 310 and Froude number of 2.06 the radial momentum transfer process was restricted to a narrow outer region of the jet until a downstream axial distance of about 2 tube diameters was reached. Thereafter, the transition to a flat profile took place smoothly.  相似文献   

9.
A model for unconfined bubble plumes is developed without assumptions as to the form of the velocity and gas-fraction profiles or as to the fraction of the momentum flux associated with the mean flow. Dimensionless solutions for axisymmetric and plane-symmetric extended sources indicate an initial contraction followed by an almost linear expansion which closely resembles the single-phase case. A second contraction is predicted near the surface of deep bodies of liquid. Gas and liquid velocity measurements in laboratory-scale plumes are presented, providing information on entrainment coefficients, velocity profiles, bubble velocities and the contribution of velocity fluctutations to the total momentum flux. The latter effect is considerable, providing an explanation of the “too-low” plume velocities found by other investigators.  相似文献   

10.
The numerical simulation of the viscoelastic flow through a wavy channel was carried out using the modified Giesekus model. It was found that the excess pressure loss relates to the stretch-thickening properties of elongational viscosity and the geometry of the wavy channel through a large elongational component of the flow at the winding part of the channel. The profiles of the axial component of the velocity become significantly asymmetric when the excess pressure loss occurs. Furthermore, the velocity profiles of a 0.1 wt% solution of polyacrylamide were measured using laser Doppler velocimetry. The results of these measurements are compared to the numerical results. Received: 30 June 1998 Accepted: 20 May 1999  相似文献   

11.
The flow of a Newtonian fluid and a Boger fluid through sudden square–square contractions was investigated experimentally aiming to characterize the flow and provide quantitative data for benchmarking in a complex three-dimensional flow. Visualizations of the flow patterns were undertaken using streak-line photography, detailed velocity field measurements were conducted using particle image velocimetry (PIV) and pressure drop measurements were performed in various geometries with different contraction ratios. For the Newtonian fluid, the experimental results are compared with numerical simulations performed using a finite volume method, and excellent agreement is found for the range of Reynolds number tested (Re2 ≤ 23). For the viscoelastic case, recirculations are still present upstream of the contraction but we also observe other complex flow patterns that are dependent on contraction ratio (CR) and Deborah number (De2) for the range of conditions studied: CR = 2.4, 4, 8, 12 and De2 ≤ 150. For low contraction ratios strong divergent flow is observed upstream of the contraction, whereas for high contraction ratios there is no upstream divergent flow, except in the vicinity of the re-entrant corner where a localized atypical divergent flow is observed. For all contraction ratios studied, at sufficiently high Deborah numbers, strong elastic vortex enhancement upstream of the contraction is observed, which leads to the onset of a periodic complex flow at higher flow rates. The vortices observed under steady flow are not closed, and fluid elasticity was found to modify the flow direction within the recirculations as compared to that found for Newtonian fluids. The entry pressure drop, quantified using a Couette correction, was found to increase with the Deborah number for the higher contraction ratios.  相似文献   

12.
Kinematics and dynamics of the viscoelastic flow in an axisymmetric 4 : 1 sudden contraction geometry are studied for a highly elastic polyisobutylene (PIB) based polymer solution (referred to as PIB-Boger fluid). The critical conditions for the onset of the elastic instabilities and the dynamics of the resulting secondary flows are measured for various flow rates. The spatio-temporal characteristics of the flow are determined by instantaneous pressure measurements and streakline photography. The nonlinear dynamics of the global flow field both upstream and downstream of the contraction plane are systematically examined. New dynamic flow behavior and elastic instabilities downstream of the contraction plane are reported. It is shown that the instantaneous pressure measurements along with flow visualization can be used as an effective tool to characterize viscoelastic flows in complex geometries.  相似文献   

13.
We study the flow of a Newtonian fluid through microfabricated hyperbolic contractions followed by a sudden expansion, with the aim of investigating the potential of this geometry to serve as an extensional microrheometer. A set of planar converging geometries, with total Hencky strains ranging from 1.0 to 3.7, were fabricated in order to produce a homogeneous extensional flow field within the contraction. The velocity field in various planes of the hyperbolic contraction was quantified by means of microparticle image velocimetry (μPIV) and the pressure drop across the converging geometry was also measured and found to vary approximately linearly with the flow rate. Additionally, an extensive range of numerical calculations were carried out using a finite-volume method to help assess the performance of this geometry as a microfluidic elongational rheometer. The measured velocity fields in the contraction and associated pressure drops compare very well (to within 10%) with the numerical predictions. For the typical dimensions used in the microfluidic devices, the steady viscous flow through the contraction is shown to be three-dimensional and it is demonstrated that regions with nearly constant strain rate can only be achieved using geometries with large total Hencky strains under Hele–Shaw (potential-like) flow conditions.  相似文献   

14.
The flow of a 5.0 wt.% solution of polyisobutylene in tetradecane through a planar 4 : 1 contraction exhibiting a shear thinning viscosity is simulated using the flow-type sensitive quasi-Newtonian fluid model. The shear viscosity is fitted by the Giesekus model, which, with the chosen parameters, leads to an extension thickening elongational viscosity. The stress and velocity fields of the numerical simulations are compared with the experimental results of Quinzani et al. [J. Non-Newtonian Fluid Mech. 52 (1994) 1–36] and the numerical results of the viscoelastic simulation using the Giesekus model of Azaiez et al. [J. Non-Newtonian Fluid Mech. 62 (1996) 253–277]. It can be shown that the quasi-Newtonian fluid qualitatively predicts the essential features of the flow in the vicinity of the contraction.  相似文献   

15.
Using nuclear magnetic resonance (NMR) flow imaging to examine fluid motions at constant velocities or flows that change relatively slowly has been well-documented in the literature. Application of this technique to accelerative flows, on the other hand, has been limited. This study reports the use of an NMR flow imaging method, for which acceleration is not explicitly compensated in the NMR pulse sequence, to measure axial and radial fluid motions during flow through an axisymmetric sudden contraction. In this flow geometry, both velocity and acceleration are spatially dependent. The flow contraction ratio was 2:1. The method was first applied to examine Newtonian liquids at low and high Reynolds numbers under laminar flow conditions. The measured axial and radial velocity profiles, without accounting for acceleration effects in the data analysis, across the contraction are in excellent qualitative agreement with previous experimental data and theoretical calculations reported in the literature. Quantitative comparison of the axial and radial velocities with numerical results indicates that the maximum error from acceleration effects is about 10%. The method has also been used to examine the flow of a concentrated suspension (50% by volume of solid particles) through the contraction. The flow kinematics of the suspension at creeping flow conditions appear to mimic those of the Newtonian fluid with some slight differences. NMR images taken immediately following the cessation of flow suggest a slight degree of particle migration toward the center of the pipe downstream of the contraction.  相似文献   

16.
Y. Xu  P. Wang  R. Qian 《Rheologica Acta》1986,25(3):239-245
Three-dimensional velocity distributions in the entry region of a rectangular slit contraction were investigated using a dual-beam laser Doppler velocimeter. The flow of a silicone oil (a Newtonian fluid) and a solution of silicone rubber in the same silicone oil (a viscoelastic fluid) was studied at low Reynolds numbers (Re < 0.5). In contrast to the usual velocity distribution of a Newtonian fluid, the viscoelastic fluid showed the following characteristic features: (1) a pronounced axial velocity overshoot immediately after the slit entrance and a maximum before the slit exit; (2) appearance of an axial flow deceleration region just before the sharp acceleration near the slit entrance. Even more remarkably, a saddle form of velocity profile was found in the entrance region. This flow pattern is completely different from that found for Newtonian fluids and has not yet been explained using existing rheological analysis.Parts of this paper were presented at the IX. Intern. Congress on Rheology at Acapulco (Mexico), October 8–13, 1984  相似文献   

17.
The roles of luid inertia and shear-rate dependent viscosity in determining the velocity field in an axisymmetric sudden contraction are assessed by finite-element analysis for a generalized Newtonian fluid with viscosity function given by a Carreau equation. Acting alone, either increasing shear-thinning of the viscosity or increasing fluid inertia suppresses the upstream vortex that surrounds the opening to the small tube. For creeping flows, shear thinning does not produce concavities and off-centered maxima in the axial velocity profile just inside the small tube, even at high Carreau numbers where the velocity field approaches the limiting form for a power-law fluid. Peaks in the axial velocity away from the center of the tube were found only for moderate and high Reynolds numbers and were enhanced by shear thinning, which decreased the viscosity and consequently increased the “local” Reynolds number near the wall of the small tube. The effect of steep velocity gradients near this surface on the accuracy of the finite-element approximations is discussed.  相似文献   

18.
The flow of a polystyrene Boger fluid through axisymmetric contraction–expansions having various contraction ratios (2≤β≤8) and varying degrees of re-entrant corner curvatures are studied experimentally over a large range of Deborah numbers. The ideal elastic fluid is dilute, monodisperse and well characterized in both shear and transient uniaxial extension. A large enhanced pressure drop above that of a Newtonian fluid is observed independent of contraction ratio and re-entrant corner curvature. Streak images, laser Doppler velocimetry (LDV) and digital particle image velocimetry (DPIV) are used to investigate the flow kinematics upstream of the contraction plane. LDV is used to measure velocity fluctuation in the mean flow field and to characterize a global elastic flow instability which occurs at large Deborah numbers. For a contraction ratio of β=2, a steady elastic lip vortex is observed while for contraction ratios of 4≤β≤8, no lip vortex is observed and a corner vortex is seen. Rounding the re-entrant corner leads to shifts in the onset of the flow transitions at larger Deborah numbers, but does not qualitatively change the overall structure of the flow field. We describe a simple rescaling of the deformation rate which incorporates the effects of lip curvature and allows measurements of vortex size, enhanced pressure drop and critical Deborah number for the onset of elastic instability to be collapsed onto master curves. Transient extensional rheology measurements are utilized to explain the significant differences in vortex growth pathways (i.e. elastic corner vortex versus lip vortex growth) observed between the polystyrene Boger fluids used in this research and polyisobutylene and polyacrylamide Boger fluids used in previous contraction flow experiments. We show that the role of contraction ratio on vortex growth dynamics can be rationalized by considering the dimensionless ratio of the elastic normal stress difference in steady shear flow to those in transient uniaxial extension. It appears that the differences in this normal stress ratio for different fluids at a given Deborah number arise from variations in solvent quality or excluded volume effects.  相似文献   

19.
A numerical method is used to study the influence of inertia and elongational properties on the vortex growth in the flow of a viscoelastic fluid through a four-to-one contraction. It appears that the vortex growth regime and the divergent flow regime, which are observed in experiments for some fluids, can be found for a choice of the material parameters where both the elongational stresses and the inertia forces are large for the flow rate considered. After studying the type and the vorticity it is concluded that the appearance of a divergent flow regime is likely to be a critical phenomenon (i.e., a change of type for a critical velocity) and that large elongational stresses are essential as well.  相似文献   

20.
应用共转导数型本构方程研究了液晶高分子纺丝挤出过程的拉伸黏度,应用计算机符号运算软件 Maple得出解析表达式,拉伸黏度与拉伸率之间关系(随剪切速率变化)表明存在分岔现象,得出拉伸黏度显著高于相应的剪切黏度,解释了液晶高分子熔体挤出时不发生挤出胀大的物理机制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号