首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
基于鲁棒滤波的无人机着陆相对导航方法   总被引:1,自引:0,他引:1  
针对无人机在移动平台上进行起降时的相对导航问题,提出了一种基于鲁棒高阶容积滤波的惯导/视觉相对导航方法。建立了相对导航系统模型,基于无人机与移动平台之间的相对运动给出了系统的相对惯导方程,并针对系统中传感器的量测特性给出了导航敏感器的测量方程。针对相对导航系统非线性较强且量测噪声不符合高斯分布等问题,在高阶容积滤波的基础上,结合Huber-based量测更新方程,设计了鲁棒高阶容积滤波相对导航滤波器,该方法具有较高的估计精度,且对混合高斯噪声有鲁棒性。相对姿态采用四元数表示,为保证四元数的归一化,在设计相对导航滤波器时采用修正的罗德里格斯参数表示姿态误差。仿真结果表明,该方法可以准确地给出无人机与移动平台之间的相对位置、速度和姿态信息,且估计精度高于扩展卡尔曼滤波、Huber-Based滤波以及高阶容积卡尔曼滤波。  相似文献   

2.
针对自主驾驶车辆长时间导航精度要求难以满足的问题,建立了GPS与微惯性导航系统的组合导航滤波模型,在位置观测的同时引入姿态信息,提高了导航精度。在此基础上提出了基于权值矩阵的模糊自适应卡尔曼滤波算法,该算法通过模糊控制器自适应地改变每个观测量的权值,得到权值矩阵引入卡尔曼滤波器实现自适应滤波。仿真和实验结果表明,所提出的权值矩阵模糊卡尔曼滤波性能优于衰减因子自适应卡尔曼滤波,特别是在GPS信号失真及噪声先验统计特性不可知的情况下,其定位精度能够保证在1m之内。  相似文献   

3.
针对非合作航天器相对导航中测量噪声不确定的问题,提出了一种模糊迭代均方根容积卡尔曼滤波算法,实现对非合作目标相对状态的测量。该算法利用容积点均方根迭代策略和模糊推理系统实时调整改进容积卡尔曼滤波的量测噪声协方差阵权值,修正量测噪声协方差阵,使其接近真实噪声值,从而提高目标跟踪算法的自适应能力,提高了滤波精度。通过建立数学仿真模型,分别采用扩展卡尔曼滤波、容积卡尔曼滤波以及模糊迭代均方根容积卡尔曼滤波进行跟踪仿真,仿真结果表明,与标准容积卡尔曼滤波相比,该改进算法能够提高13.17%的跟踪精度。  相似文献   

4.
为了提高捷联惯性导航系统在线标定的精度和实时性,根据模型预测滤波算法和Sage_Husa自适应卡尔曼滤波算法的优点,提出了一种新的自适应模型预测组合滤波算法。该算法首先利用模型预测滤波算法估计出系统模型误差,并对系统状态方程实时修正,以减小系统模型误差对导航精度的影响;然后利用简化的自适应滤波算法对量测噪声在线调整,修正噪声统计特性,以提高滤波精度。将提出的算法进行在线标定仿真实验,并与传统的卡尔曼滤波在线标定算法进行比较,结果表明,提出的自适应模型预测组合滤波算法能有效完成在线标定,且标定精度和收敛速度均优于传统方法。  相似文献   

5.
捷联惯导初始对准大失准角系统误差模型中,当噪声具有不确定统计特性时,基于白噪声假设的无迹卡尔曼滤波算法鲁棒性较差.针对该问题,提出了一种基于H∞理论的鲁棒超球体无迹卡尔曼滤波算法.给出了计算量小的超球体采样策略,推导了H∞滤波的鲁棒机理,分离了鲁棒环节.将鲁棒环节引入超球体无迹卡尔曼滤波算法,得到鲁棒超球体无迹卡尔曼滤波算法,并分别在系统噪声和量测噪声为白噪声和有色噪声的条件下,对超球体无迹卡尔曼滤波和鲁棒超球体无迹卡尔曼滤波两种滤波方法进行了仿真实验.仿真结果表明,鲁棒超球体无迹卡尔曼滤波在白噪声情况下虽然精度有所降低,但是相对超球体无迹卡尔曼滤波具有了对有色噪声的鲁棒性,较超球体无迹卡尔曼滤波方法更适用于天向失准角为大角度并且噪声特性为有色噪声的情况.  相似文献   

6.
本文重点研究了卡尔曼滤波在静电陀螺监控器(ESGM)参数估计应用中滤波发散的问题。由于系统本身和外部条件的不确定性,很难对系统各状态进行准确的数学描述,造成滤波器不稳定甚至发散。本文提出一种自适应鲁棒滤波方法,并应用于ESGM的初始标定。研究结果表明,应用该算法,可以有效地抑制由于模型不准而产生的滤波发散现象,大大提高了参数估计的精度。  相似文献   

7.
模糊自适应滤波在水下航行器组合导航系统中的应用   总被引:4,自引:3,他引:1  
为了提高水下航行器组合导航系统精度和可靠性,针对水下航行器组合导航系统量测噪声统计特性随实际工作环境的不同而变化的特点,提出了基于模糊自适应联邦卡尔曼滤波的水下组合导航算法。通过监测理论残差与实际残差的协方差的一致程度,应用模糊系统不断调整滤波器的增益系数,对子滤波器进行在线自适应调整,从而实现导航状态的最优估计滤波。通过对联邦滤波器信息分配系数模糊自适应调整,减少了滤波计算量,提高了滤波实时性。软件仿真实验结果表明:模糊自适应滤波可以有效地提高水下航行器组合导航系统的精度和可靠性,提高导航滤波实时性,克服传统的滤波算法的缺点与不足。  相似文献   

8.
为了提高标准Cubature卡尔曼滤波(CKF)的稳定性和鲁棒性,提出一种改进的多重渐消H∞滤波Cubature卡尔曼滤波算法。首先基于系统状态的可观测性给出多重渐消因子矩阵求解过程,提高滤波算法的稳定性,抑制滤波发散;其次,引入H∞鲁棒思想,构造多重渐消H∞滤波Cubature卡尔曼滤波器;最后,提出采用一种奇异值分解的矩阵分解策略代替标准Cubature卡尔曼滤波中的Cholesky分解,进一步提高算法的数值稳定性。实际GPS/INS组合导航实验表明,改进的多重渐消H∞滤波Cubature卡尔曼滤波算法不仅能有效抑制滤波发散提高算法的稳定性,而且对观测野值具有更高的鲁棒性;提出的新算法与标准CKF算法相比,XYZ三个方向的位置精度分别提高了55.8%,46.6%和39.7%。  相似文献   

9.
利用李群理论对姿态估计问题开展研究,提出一种基于SE(3)扩展卡尔曼滤波姿态估计算法。通过将姿态信息和陀螺仪漂移构造为特殊欧式群SE(3)的元素,推导出了基于SE(3)扩展卡尔曼滤波的姿态估计算法SE(3)-EKF。通过对比分析,指出SE(3)-EKF与近年来提出的几何扩展卡尔曼滤波算法是等价的。在坐标系一致性的基础上,所提出的结论为几何扩展卡尔曼滤波算法提供了另外一种解释。仿真实验结果表明提出的SE(3)-EKF与几何扩展卡尔曼滤波算法精度基本一致,且在失准角较大时估计精度显著优于传统的乘性扩展卡尔曼滤波算法,从而从一定程度上放松了线性卡尔曼滤波姿态估计算法对初始姿态精度的要求。  相似文献   

10.
捷联惯导系统传递对准两种滤波方法比较研究   总被引:1,自引:5,他引:1  
将H∞滤波方法用于捷联惯导系统(SINS)空中动基座传递对准,并对卡尔曼滤波和H∞滤波应用于传递对准的鲁棒效果进行了比较研究。仿真结果表明,在有色噪声和白噪声强度较小时,两种滤波方法的滤波精度差别不大,但当有色噪声和白噪声强度较大时,卡尔曼滤波精度优于H∞滤波。换言之,卡尔曼滤波对于噪声的不确定性是具有一定的鲁棒性的,并且就估计精度而言,其鲁棒性优于H∞滤波,但H∞滤波的估计速度优于卡尔曼滤波。  相似文献   

11.
基于四元数自适应卡尔曼滤波的快速对准算法   总被引:1,自引:0,他引:1  
针对捷联惯导初始对准问题,提出了一种具有干扰抑制能力的四元数自适应卡尔曼滤波初始对准算法。通过将初始对准问题转化为Wahba姿态确定问题,直接建立四元数的滤波模型,并采用自适应卡尔曼滤波对初始时刻姿态四元数进行估计,利用姿态四元数更新求出当前姿态来实时地反映载体的姿态变化。针对直接构建量测模型导致收敛速度慢的问题,提出一种基于最优四元数估计法构造K矩阵原理的改进算法。利用三轴转台模拟不同的摇摆环境进行实验,转台实验表明了改进算法具有较快的收敛速度和良好的稳定性及精度,中等精度的惯导系统在150s至200s的对准时间内,航向角均值误差小于2'。  相似文献   

12.
基于状态约束的MIMU/磁强计组合姿态估计滤波算法   总被引:1,自引:0,他引:1  
构建了基于MEMS技术的陀螺、加速度计、磁强计及空速计组合的微小型飞行器姿态测量系统.研究了基于四元数的扩展卡尔曼滤波算法.取姿态误差四元数和陀螺随机漂移构建状态向量,通过误差四元数微分方程和陀螺随机误差模型建立卡尔曼滤波状态方程,采用速度信息实时补偿加速度计输出值得到重力矢量,利用重力矢量估计水平姿态,通过滤波补偿姿态误差,降低了对陀螺的精度要求.将状态向量之间的约束方程作为伪量测方程引入到量测模型中,解决了由于状态向量相互约束导致的滤波发散和奇异.动态飞行滤波噪声的自适应调整增强了系统性能.仿真和实验表明,该滤波算法能够有效避免系统的漂移,提高系统测量精度和稳定性.  相似文献   

13.
当海况不佳时,水下航行器大幅晃动,捷联惯导系统无法快速完成自主初始对准,因此提出了利用多普勒计程仪提供的速度信息进行运动中辅助对准。针对在非线性对准中扩展卡尔曼滤波存在精度低,且需要计算雅可比矩阵等不足,提出了一种基于非线性预测滤波的求容积卡尔曼滤波算法。该滤波算法将惯性器件测量误差作为模型误差使用非线性预测滤波器进行实时预测,然后再利用求容积卡尔曼滤波对模型误差补偿后的系统进行状态估计。仿真结果表明,与扩展卡尔曼滤波和求容积卡尔曼滤波算法相比,该滤波算法能够不仅提高失准角特别是方位失准角的估计精度,其精度约为45″,而且加快了收敛速度。同时由于该滤波算法降低了系统状态的维数,因此也大大减少了计算量。  相似文献   

14.
强跟踪-容积卡尔曼滤波在弹道式再入目标跟踪中的应用   总被引:1,自引:0,他引:1  
对于具有一定机动能力的弹道式再入目标跟踪问题,稳定性好、鲁棒性强、收敛精度高的估计方法是保证跟踪精度的关键。针对再入运动模型和测量体制的强非线性以及目标机动引起的滤波精度下降问题,提出一种将强跟踪滤波(STF)和基于三阶球面-向径容积规则的容积卡尔曼滤波(CKF)相结合的强跟踪-容积卡尔曼滤波(STCKF)。通过将强跟踪算法中的自适应渐消因子引入到滤波时间更新和测量更新方程中,在线实时调整滤波增益矩阵,能有效避免模型失准造成的滤波性能下降,使该算法兼具CKF滤波精度高和STF鲁棒性强的优点。通过数学仿真表明,改进后的STCKF可以实现对具有机动的弹道式再入目标的高精度跟踪,相对于CKF精度提高50%,并且具有更强的鲁棒性和自适应能力。  相似文献   

15.
针对船体变形测量系统中模型不确定以及未知噪声影响导致的误差问题,分析并推导了模型偏差对滤波估计的影响,提出一种基于姿态匹配的强跟踪最大互相关熵卡尔曼滤波(STMCKF)算法,用于船体变形估计。该算法采用姿态匹配,基于两套惯性系统的姿态信息确立滤波观测量并建立线性量测方程,通过自适应在线调整多个渐消因子对多个数据通道进行渐消,减小模型失配导致的误差,并设计基于最大互相关熵准则为最优准则的滤波算法,减小量测过程中受到的非高斯噪声产生的误差。最后,在模型不匹配及噪声不确定的条件下进行了仿真验证。仿真结果表明,与传统卡尔曼滤波相比,变形估计精度提高10%~30%,提高了系统鲁棒性和环境适应性。  相似文献   

16.
针对无人机编队相对导航系统中由于机体/机翼遮挡导致可见信标点个数随时间变化和视觉导航传感器量测噪声统计特性不确定问题,提出了基于逆威舍特分布的变分贝叶斯自适应容积信息滤波(VBACIF)算法。该算法在信息滤波框架下,采用逆威舍特分布表示量测噪声协方差,将三阶球面-径向容积准则和变分贝叶斯理论相结合,在线识别跟踪量测噪声统计特性变化并自适应调节相对导航滤波器的量测噪声协方差矩阵,将每个可见信标点视为一个独立的信息源,融合各信标点的相对视线量测信息从而准确地估计出无人机之间的相对位置、速度和姿态。仿真结果表明,视觉量测噪声协方差未知且时变和可见信标个数变化的情况下,采用VBACIF相对位置、速度和姿态精度较容积信息滤波算法分别提高了24.85%、9.41%和45.52%。  相似文献   

17.
为解决超宽带(UWB)系统定位易受室内环境的影响,测距误差特性呈现非高斯分布的问题,提出了一种鲁棒UKF定位算法,实现室内高精度定位。首先,介绍了UWB系统定位实现,以及对比分析了扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF)定位算法之间的差异;然后,针对UKF算法存在的局限性,通过引入代价函数,自适应修正观测方差,建立鲁棒机制,降低算法对噪声特性分布的要求,提高了UWB系统环境适应能力。实测结果表明:该方法性能均优于最小二乘、EKF和UKF算法,平均定位精度可达0.33 m,相比较于最小二乘算法,定位精度提高了15%,是一种实时高精度的室内定位算法。  相似文献   

18.
为提高深海水下拖曳系统的定位精度,分析了深海拖曳系统压力传感器与超短基线定位系统(USBL)以及多普勒计程仪的耦合原理,给出了基于垂直约束下的USBL定位的基本原理及拖曳体直线运动状态下的开窗平滑算法。采用非线性的无迹卡尔曼滤波模型对超短基线定位、多普勒测速、深度、斜距、姿态及角速率信息进行融合。针对声学数据常见的粗差观测,结合自适应抗差滤波算法,提出基于垂直约束的自适应抗差卡尔曼滤波算法。最后仿真和实测实验证明在5000 m水深条件下,在航行方向上位置精度较传统滤波算法提高了近2 m。基于垂直约束自适应抗差无迹卡尔曼滤波算法可充分利用高精度观测信息,提高深海拖曳系统的定位精度和容错性。  相似文献   

19.
自适应卡尔曼滤波在惯导初始对准中的应用研究   总被引:16,自引:2,他引:14  
本文研究了自适应卡尔曼滤波技术在惯导系统中的应用。在噪声统计特性未知或近似已 知的情况下,采用常规卡尔曼滤波会导致较大的状态估计误差,甚至使滤波发散;而自适应卡 尔曼滤波在估计状态的同时,利用观测数据带来的信息,可在线估计噪声的统计特性,从而不 断地改进滤波器的设计,由此得到的滤波估计比常规卡尔曼估计精度更高。本文采用Sage 和 Husa 自适应滤波算法,结合惯导初始对准,给出了计算机仿真。仿真结果进一步证实在噪声统 计特性不确切知道的情况下,自适应卡尔曼滤波的估计精度高于常规卡尔曼滤波的估计精度。  相似文献   

20.
—针对现有的自适应卡尔曼滤波算法实时性不强、结构繁杂,本文研究了在惯导与GPS组合系统中应用一种修正的自适应卡尔曼滤波算法,并与常规卡尔曼滤波算法作了比较。仿真结果表明,这种算法具有结构简单、高效率和精度高等优点,不失为一种实用而有效的滤波算法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号