首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Exact analytical solution for flows of an electrically conducting fluid over an infinite oscillatory disk in the presence of a uniform transverse magnetic field is constructed. Both the disk and the fluid are in a state of non-coaxial rotation. Such a flow model has a great significance not only due to its own theoretical interest, but also due to applications to geophysics and engineering. The resulting initial value problem has been solved analytically by applying the Laplace transform technique and the explicit expressions for the velocity for steady and unsteady cases have been established. The analysis of the obtained results shows that the flow field is appreciably influenced by the applied magnetic field, the frequency and rotation parameters.  相似文献   

2.
The steady rotation of a disk of infinite radius in a conducting incompressible fluid in the presence of an axial magnetic field leads to the formation on the disk of a three-dimensional axisymmetric boundary layer in which all quantities, in view of the symmetry, depend only on two coordinates. Since the characteristic dimension is missing in this problem, the problem is self-similar and, consequently, reduces to the solution of ordinary differential equations.Several studies have been made of the steady rotation of a disk in an isotropically conductive fluid. In [1] a study was made of the asymptotic behavior of the solution at a large distance from the disk. In [2] the problem is linearized under the assumption of small Alfven numbers, and the solution is constructed with the aid of the method of integral relations. In the case of small magnetic Reynolds numbers the problem has been solved by numerical methods [3,4]. In [5] the method of integral relations was used to study translational flow past a disk. The rotation of a weakly conductive fluid above a fixed base was studied in [6,7], The effect of conductivity anisotropy on a flow of a similar sort was studied approximately in [8], In the following we present a numerical solution of the boundary-layer problem on a disk with account for the Hall effect.  相似文献   

3.
An orthogonal collocation method is used to compute steady flows of viscoelastic fluids in a cylindrical tank covered by a rotating disk. The stability of these flows with respect to small disturbances is also analyzed. The Criminale-Ericksen-Filbey constitutive equation is used, since the primary flow is viscometric and the secondary flow is small. The solutions satisfy the equation of continuity and the boundary conditions exactly, including the velocity discontinuity at the edge of the disk. The computed flows for aqueous solutions of Separan 30 exhibit single or double vortices, according to the concentration and the rotation speed. Reasonable agreement is found with the data of Hill [7,8].  相似文献   

4.
A study is undertaken to ascertain non-Newtonian effects in steady flows of elastic fluids due to an infinite rotating disk when there is suction across its surface. The fluids considered are of a class for which the similarity-type solution of von Kármán is an exact solution. It is shown that the presence of elasticity (of the type considered) does not result in flow reversal, the disk acting as a centrifugal fan as in Newtonian flow.  相似文献   

5.
The unsteady free convection flow over an infinite vertical porous plate, which moves with time-dependent velocity in an ambient fluid, has been studied. The effects of the magnetic field and Hall current are included in the analysis. The buoyancy forces arise due to both the thermal and mass diffusion. The partial differential equations governing the flow have been solved numerically using both the implicit finite difference scheme and the difference-differential method. For the steady case, analytical solutions have also been obtained. The effect of time variation on the skin friction, heat transfer and mass transfer is very significant. Suction increases the skin friction coefficient in the primary flow, and also the Nusselt and Sherwood numbers, but the skin friction coefficient in the secondary flow is reduced. The effect of injection is opposite to that of suction. The buoyancy force, injection and the Hall parameter induce an overshoot in the velocity profiles in the primary flow which changes the velocity gradient from a negative to a positive value, but the magnetic field and suction reduce this velocity overshoot.  相似文献   

6.
The problem of the propagation of a three-dimensional jet of viscid incompressible fluid flowing from a narrow curved slot into a fluid-filled space along a rigid plane is considered within the framework of the equations of a steady laminar boundary layer. A class of initial conditions at the slot outlet which generates in the jet a velocity field without secondary flows is identified. Within this class the boundaryvalue problem for the three-dimensional boundary layer can be divided into two problems of lower dimensionality: a dynamic and a kinematic problem. As a result of the analysis of the kinematic problem the general structure of the regions of existence and uniqueness of the solution is determined. An investigation of the dynamic problem shows that as the boundaries of the region of existence are approached a singularity characterized by an infinite increase in the thickness of the jet is formed in the solution of the boundary layer equations.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 75–81, July–August, 1991.  相似文献   

7.
In this note the two-dimensional problem of incoming surface waves against an approximately vertical wall or cliff in water of infinite depth is examined, using velocity potential formulation and linearized boundary-value problem theory for time-harmonic motion. The cliff has arbitrary profile but for simplicity is taken to be vertical at the free surface. The approximate first-order solution is determined subject to a dynamical edge condition apposite to the presence of surface tension, and contains partially reflected outgoing waves. The solution is obtained by perturbation theory in a form involving known unperturbed and first-order correction potentials that is applicable also to water of finite constant depth. The motivation for the note is to point out a correction in principle to the results of a recent investigation for a specific profile, in which reflexion is ignored and another error made in obtaining a first-order solution by a method that is restricted to infinite depth.  相似文献   

8.
Interaction of viscous wakes with a free surface   总被引:5,自引:0,他引:5  
The interaction of laminar wakes with.free-surface waves generated by a moving body beneath the surface of an incompressible viscous fluid of infinite depth was investigated analytically. The analysis was based on the steady Oseen equations for disturbed flows.The kinematic and dynamic boundary conditions were linearized for the small-amplitude free-surface waves. The effect of the moving body was mathematically modeled as an Oseenlet.The disturbed flow was regarded as the sum of an unbounded singular Oseen flow which represents the effect of the viscous wake and a bounded regular Oseen flow which represents the influence of the free surface. The exact solution for the free-surface waves was obtained by the method of integral transforms. The asymptotic representation with additive corrections for the free-surface waves was derived by means of Lighthill‘s two-stage scheme. The symmetric solution obtained shows that the amplitudes of the free-surface waves are exponentially damped by the presences of viscosity and submergence depth.  相似文献   

9.
10.
A set of linearized 26 moment equations, along with their wall boundary conditions, are derived and used to study low-speed gas flows dominated by Knudsen layers. Analytical solutions are obtained for Kramers’ defect velocity and the velocity-slip coefficient. These results are compared to the numerical solution of the BGK kinetic equation. From the analysis, a new effective viscosity model for the Navier–Stokes equations is proposed. In addition, an analytical expression for the velocity field in planar pressure-driven Poiseuille flow is derived. The mass flow rate obtained from integrating the velocity profile shows good agreement with the results from the numerical solution of the linearized Boltzmann equation. These results are good for Knudsen numbers up to 3 and for a wide range of accommodation coefficients. The Knudsen minimum phenomenon is also well captured by the present linearized 26-moment equations.  相似文献   

11.
A plane steady problem of a point vortex in a domain filled by a viscous incompressible fluid and bounded by a solid wall is considered. The existence of the solution of Navier-Stokes equations, which describe such a flow, is proved in the case where the vortex circulation Θ and viscosity ν satisfy the condition |Θ| < 2πν. The velocity field of the resultant solution has an infinite Dirichlet integral. It is shown that this solution can be approximated by the solution of the problem of rotation of a disk of radius Γ with an angular velocity ω under the condition 2πγ 2 ω → Γ as γ → 0 and ω→∞.  相似文献   

12.
The von Kàrmàn problem of steady viscous incompressible flow in a half-space beneath a permeable, porous disk of infinite radius, uniformly rotating it its own plane, is considered. The Bevers-Joseph condition which takes account for viscous fluid slip relative to the plane disk is taken for the boundary condition for the tangential velocity component. This makes it possible to consider the flow only outside the porous disk. The disk permeability effect on the boundary layer is studied, in particular, its influence on the dependence of the moment of viscous forces distributed over the disk about the axis of rotation on the permeability and the pressure difference.  相似文献   

13.
Quasi-linear integrodifferential equations that describe vortex flows of an ideal incomparessible liquid in a narrow curved channel in the Eulerian-Lagrangian coordinate system are considered. The necessary and sufficient conditions for hyperbolicity of the system of equations of motion are obtained for flows with a monotonic velocity depth profile. The propagation velocities of the characteristics and the characteristic form of the system are calculated. A particular solution is given in which the system of integrodifferential equations changes type with time. The solution of the Cauchy problem is given for linearized equations. An example of initial data for which the Cauchy problem is ill-posed is constructed. Novosibirsk State University, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 39, No. 4, pp. 38–49, July–August, 1998.  相似文献   

14.
The periodic boundary displacement protocol leading to the optimum wall‐to‐fluid heat‐transfer rate, or to the most efficient mixing rate, in 2‐D annular Stokes flows is determined by calculating the steady periodic velocity and temperature fields. To obtain the steady periodic state one usually solves the dynamical system obtained after the spatial coordinates have been discretized. Here, we calculate the steady periodic state using an implicit method based on the discretization of the time coordinate over a period and the asymptotic regime is enforced by the periodicity condition in the computed temperature field. The obtained system of equations is solved using a Newton‐type iterative algorithm with invariant Jacobian. At each iteration step, the sparse linearized system is solved using a multi‐grid algebraic technique of rapid convergence. From a computational point of view and for the problem considered here, this method is an order of magnitude faster than the one based on a spatial discretization. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
The initial boundary value problem for the compressible Navier–Stokes equation is considered in an infinite layer of . It is proved that if the Reynolds and Mach numbers are sufficiently small, then strong solutions to the compressible Navier–Stokes equation around parallel flows exist globally in time for sufficiently small initial perturbations. The large time behavior of the solution is described by a solution of a one-dimensional viscous Burgers equation. The proof is given by a combination of spectral analysis of the linearized operator and a variant of the Matsumura–Nishida energy method.  相似文献   

16.
In this paper, an exact analytical solution of the famous Falkner-Skan equation is obtained. The solution involves the boundary layer flow over a moving wall with mass transfer in presence of a free stream with a power-law velocity distribution. Multiple solution branches are observed. The effects of mass transfer and wall stretching are analyzed. Interesting velocity profiles including velocity overshoot and reversal flows are observed in the presence of both mass transfer and wall stretching. These solutions greatly enrich the analytical solution for the celebrated Falkner-Skan equation and the understanding of this important and interesting equation.  相似文献   

17.
Both the steady flow of an infinite mass of elastico-viscous liquid and the generation of this steady state are considered, in the case when an infinite disc is impulsively given a constant angular velocity. It is found that this flow situation, unlike other rotational flows, does not exhibit marked departures from the steady Newtonian velocity profile, a conclusion which contradicts previously published results. During the time the steady state is being generated, however, certain transient elastic effects are evident.  相似文献   

18.
A Legendre wavelet spectral collocation method is proposed here to solve three boundary layer flow problems of Walter-B fluid namely the stagnation point flow, Blasius flow and Sakiadis flow. In the proposed method, we first transform the boundary value problems into initial value problems using shooting method. We then split the semi infinite domain into subintervals and the governing initial value problems are transformed to system of algebraic equations in each subinterval. The solutions of these algebraic equations yield an approximate solution of the differential equation in each subinterval. The overshoot in the velocity profile associated with the stagnation point and Blasius flows and undershoot in the Sakiadis flow is controlled. Physically realistic solutions are presented for both weakly and strongly viscoelastic parameters. The residual error validates the correctness, convergence and accuracy of the obtained solutions.  相似文献   

19.
The two-dimensional problem of the form of a free surface of an ideal incompressible fluid during steady flow from a rectangular channel through a thin slot with simultaneous uniform delivery of fluid through the side walls is examined. Forces of gravity and surface tension are taken into account. The nonlinear problem of the simultaneous determination of the free surface and velocity field of the fluid is solved by the iteration method. Convergence of the iterations to the solution of the problem for small values of the parameters is investigated. The solution of the linearized problem is obtained in a closed form for a small depth of the discharge and small width of the channel, which is compared with the solution of the problem in a complete formulation. Graphs of the free surface of the fluid for different values of the parameters, obtained as a result of numerical solution of the nonlinear problem, are presented.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 67–75, January–February, 1977.  相似文献   

20.
Low Reynolds number solutions are obtained for two flows which are generated by the steady rotation of a finite disk of zero thickness in its own plane. The disk is assumed to be either immersed in an infinite body of fluid or else coplanar with a solid stationary plane with the fluid filling the half space on one side of it. In both cases the swirl is strong near the source of disturbance and weakens with the distance from the disk. Spatial variations of the centrifugal acceleration give rise to radial outflow near the disk as well as to inflow along the axis of symmetry. Since the disk is taken to be finite the analysis presented accounts for the conditions prevailing at the rim and beyond it. Thus, it is found that when the solid stationary plane is absent the flow is faster than when that partition is present. The retarding effect is noticeable even in the vicinity of the origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号