首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Under the influence of duct curvature, cross-sectional area variation and internal struts, the internal flow field within a curved annular duct becomes rather complicated and contains strong secondary flow. In this paper, the secondary flow characteristics in an annular duct with struts are experimentally and numerically investigated. The results show that large pressure gradients exist on the bends of hub and shroud. Meanwhile, two counter-rotating vortex pairs appear both along the hub-side and shroud-side surfaces. The hub-side vortex pair of which the vortex cores travel downstream parallelly evolves from the horseshoe vortex which is induced by the leading edge of the upstream strut, whereas the shroud-side vortex pair originates from the strut trailing edge and the corresponding vortex cores develop in a divergent way. Additionally, the effects of the duct exit Mach number on the secondary flow characteristics are also studied. As the exit Mach number increases, the streamwise pressure gradients increase and lead to more intense vortices, higher total pressure loss and larger flow distortion.  相似文献   

2.
Detonation combustion of a hydrogen-air mixture entering an axisymmetric convergent-divergent nozzle at a supersonic velocity is considered under atmospheric conditions at altitudes up to 24 km. The investigation is carried out on the basis of the two-dimensional gasdynamic Euler equations for a multicomponent reacting gas. The limiting altitude ensuring detonation combustion in a Laval nozzle of given geometry is numerically established for freestream Mach numbers 6 and 7. The possibility of the laser initiation of detonation in a supersonic flow of a stoichiometric, preliminarily heated hydrogen-air mixture is experimentally studied. The investigation is carried out in a shock tube under conditions simulating a supersonic flow in the nozzle throat region.  相似文献   

3.
The flow of igniting hydrogen-air mixtures entering an axisymmetric convergent-divergent nozzle at a supersonic velocity is considered. A possibility of stabilizing detonation combustion is numerically investigated at different freestream Mach numbers with account for nonuniform distribution of hydrogen concentration at the nozzle entry. The investigation is performed on the basis of the two-dimensional gasdynamic Euler equations for a multicomponent reacting gas. A detailed model of chemical reactions is used. The calculated thrust is compared with the drag of a conical housing containing the supersonic nozzle considered.  相似文献   

4.
 Studies on mixing enhancement with two dimensional (2D) lobed nozzle have been conducted in a dual stream supersonic flow facility. The distributions of momentum flux, stagnation pressure and stagnation temperature across a plane at different axial distances from the nozzle exit were considered as a measure of mixing. The results indicated an enormous enhancement in mixing when 2D lobed nozzle was employed in comparison with conventional plain 2D nozzle. The enhanced mixing performance could be attributed to the large scale axial vortices observed in the flow-field of subsonic lobed nozzles by earlier investigators. Received: 27 December 1996 / Accepted: 21 August 1997  相似文献   

5.
The results of modeling a turbulent supersonic jet at M = 5 using large-eddy simulation (LES) are presented. The structural features of turbulence formed in this flow are analyzed. The possibilities of the large-eddy simulation method and the complexities of simulation of the compressibility effects in jet flows at high Mach numbers are considered. Such features of the supersonic jet as the local turbulent shocklets and Mach waves are reproduced numerically. It is shown that in the neighborhood of the jet the trajectories of ejection flow are located along the front of Mach waves. Anisotropic turbulent structures whose longitudinal scale is greater than the transverse scale by an order of magnitude are revealed in the jet. An estimate of the baroclinic effects shows their weak influence on the vorticity generation in the jet flow considered.  相似文献   

6.
A novel Mach‐uniform method to compute flows using unstructured staggered grids is discussed. The Mach‐uniform method is a generalization of the pressure‐correction approach for incompressible flows, and is valid for Mach numbers ranging from 0 (incompressible) to > 1 (supersonic). The primary variables (ρ u ,p and ρ) are updated sequentially. The grid consists of triangles. A staggered positioning of the variables is employed: the scalar variables are located at the centroids of the triangles, whereas the normal momentum components are positioned at the midpoints of the faces of the triangles. Discretization of the two‐dimensional flow equations on unstructured staggered grids is discussed. For the cell face fluxes there is a choice between first‐order upwind and central approximation. Flows around the NACA 0012 airfoil with freestream Mach numbers ranging from 0 to 1.2 are computed to demonstrate the Mach‐uniform accuracy and efficiency of the proposed method. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
The behavior of compressible jets originated from initially turbulent pipe flows issuing in still air has been investigated at three different subsonic Mach numbers, 0.3, 0.6 and 0.9. Helium, nitrogen and krypton gases were used to generate the jet flows and investigate the additional effects of density on the flow structure. Particle image velocimetry, high-frequency response pressure transducers and thermocouples were used to obtain velocity, Mach number and total temperature measurements inside the flow field. The jets were formed at the exit of an adiabatic compressible frictional turbulent pipe flow, which was developing toward its corresponding sonic conditions inside the pipe, and continued to expand within the first four diameters distance after it exited the pipe. Theoretical considerations based on flow self-similarity were used to obtain the decay of Mach number along the centerline of the jets for the first time. It was found that this decay depends on two contributions, one from the velocity field which is inversely proportional to the distance from the exit and one from the thermal field which is proportional to this distance. As a result, a small non-linearity in the variation of the inverse Mach number with downstream distance was found. The decay of the Mach number at the centerline of the axisymmetric jets increases by increasing the initial Mach number at the exit of the flow for all jets. The decay of mean velocity at the centerline of the jets is also higher at higher exit Mach numbers. However, the velocity non-dimensionalized by the exit velocity seems to decrease faster at low exit Mach numbers, suggesting a reduced mixing with increasing exit flow Mach numbers. Helium jets were found to have the largest spreading rate among the three different gas jets used in the present investigation, while krypton jets had the lowest spreading rate. The spreading rate of each gas decreases with increasing its kinetic energy relatively to its internal energy.  相似文献   

8.
The boundary layer flow on a plate in the presence of tangential-slot supersonic gas injection into the supersonic flow is studied numerically. The dependence of the film-cooling effectiveness on the slot film parameters, i.e. gas temperature, mass flow, slot height, and the gas-film and free-stream Mach numbers, is determined. The calculation results are compared with experimental data.  相似文献   

9.
Piston theory may be used in the high Mach number supersonic flow region and/or in very high frequency subsonic or supersonic flow. In this flow model, the pressure at a point on the fluid-solid interface only depends on the downwash at the same point. However the classical piston theory may not be sufficient for some phenomena in aeroelasticity and aeroacoustics (far field prediction). Dowell and Bliss have created an extension of piston theory that allows for higher order effects that take into account the effect the distribution of downwash on pressure at any point. For simple harmonic motion, expansions in reduced frequency, inverse reduced frequency and/or inverse (square of) Mach number have all been created; The effects of higher order terms in these several expansion in creating an enhanced piston theory was illustrated for plunge and pitch motion of an airfoil (discrete system) by Ganji and Dowell. In the present paper, flutter prediction for a flexible panel in two –dimensional flow is investigated using enhanced piston theory. The goal of the present paper is to demonstrate that an enhance version of piston theory can analyze single degree of freedom flutter of a panel as compared to the classical piston theory and quasi-steady aerodynamic models which can only treat coupled mode flutter.  相似文献   

10.
A new three-dimensional (3-D) viscous aeroelastic solver for nonlinear panel flutter is developed in this paper. A well-validated full Navier–Stokes code is coupled with a finite-difference procedure for the von Karman plate equations. A subiteration strategy is employed to eliminate lagging errors between the fluid and structural solvers. This approach eliminates the need for the development of a specialized, tightly coupled algorithm for the fluid/structure interaction problem. The new computational scheme is applied to the solution of inviscid two-dimensional panel flutter problems for subsonic and supersonic Mach numbers. Supersonic results are shown to be consistent with the work of previous researchers. Multiple solutions at subsonic Mach numbers are discussed. Viscous effects are shown to raise the flutter dynamic pressure for the supersonic case. For the subsonic viscous case, a different type of flutter behavior occurs for the downward deflected solution with oscillations occurring about a mean deflected position of the panel. This flutter phenomenon results from a true fluid/structure interaction between the flexible panel and the viscous flow above the surface. Initial computations have also been performed for inviscid, 3-D panel flutter for both supersonic and subsonic Mach numbers.  相似文献   

11.
The salient features of detonation wave propagation in a supersonic flow of a stoichiometric hydrogen-air mixture in plane channels of both constant and variable cross-section are numerically investigated for the purpose of determining the conditions ensuring stabilized detonation. The propagation of a detonation wave formed in a variable-cross-section channel is studied. For different inflow Mach numbers the geometric parameters of a channel providing the detonation combustion stabilization are determined. An investigation of detonation wave stabilization in a supersonic flow of a combustible gas mixture in a plane channel with parallel walls using additional weak discharges is continued. The effects of the flow Mach number, the additional discharge energy, and the discharge location on detonation wave stabilization are studied.  相似文献   

12.
A model configuration of a hypersonic vehicle realizing the principle of compression convergence along spatially-convergent directions of the entire jet captured by an air-intake is studied. The configuration includes a convergent air-intake, whose gasdynamic design is performed using the axisymmetric supersonic flow in an internal convergent channel. The air-intake is integrated with the swept transversely-concave nose surface of the vehicle, which forms at high supersonic velocities a three-dimensional compression flow, also convergent. The results of numerical and experimental studies at freestream Mach numbers 4 and 6 are presented; they reveal the salient features of the gasdynamic pattern of the flows near the nose and the external compression wedge of the air-intake, as well as in the internal channel.  相似文献   

13.
超声速钝体逆向喷流减阻的数值模拟研究   总被引:1,自引:0,他引:1  
为研究逆向喷流技术对超声速钝体减阻的影响,采用标准k-ε湍流模型,通过求解二维Navier-Stokes方程对超声速球头体逆向冷喷流流场进行了数值模拟,并着重分析了喷口总压、喷口尺寸对流场模态和减阻效果的影响。计算结果显示:随着喷流总压的变化,流场可出现两种流动模态,即长射流穿透模态和短射流穿透模态;喷流能使球头体受到的阻力明显减小;存在最大减阻临界喷流总压值(在所研究参数范围内最大减阻可达51.1%);在其它喷流物理参数不变时,随着喷口尺寸的增大,同一流动模态下的减阻效果下降。本文的研究对超声速钝体减阻技术在工程上的应用具有一定的参考价值。  相似文献   

14.
The acoustic and flow characteristics of a supersonic tapered jet were measured for free and shrouded flow configurations. Measurements were performed for a full range of pressure ratios including over- and underexpanded and design conditions. The supersonic tapered jet is issued from a converging-diverging nozzle with a 31 rectangular slotted throat and a conical diverging section leading to a circular exit. The jet was compared to circular and rectangular supersonic jets operating at identical conditions. The distinct feature of the jet is the absence of screech tones in the entire range of operation. Its near-field pressure fluctuations have a wide band spectrum in the entire range of measurements, for Mach numbers of 1 to 2.5, for over- and underexpanded conditions. The free jet's spreading rate is nearly constant and similar to the rectangular jet, and in a shroud, the pressure drop it is inducing is linearly proportional to the primary jet Mach number. This behavior persisted in high adverse pressure gradients at overexpanded conditions, and with nozzle divergence angles of up to 35°, no inside flow separation was observed.  相似文献   

15.
The reduced-order model(ROM) for the two-dimensional supersonic cavity flow based on proper orthogonal decomposition(POD) and Galerkin projection is investigated. Presently, popular ROMs in cavity flows are based on an isentropic assumption,valid only for flows at low or moderate Mach numbers. A new ROM is constructed involving primitive variables of the fully compressible Navier-Stokes(N-S) equations, which is suitable for flows at high Mach numbers. Compared with the direct numerical simulation(DNS) results, the proposed model predicts flow dynamics(e.g., dominant frequency and amplitude) accurately for supersonic cavity flows, and is robust. The comparison between the present transient flow fields and those of the DNS shows that the proposed ROM can capture self-sustained oscillations of a shear layer. In addition, the present model reduction method can be easily extended to other supersonic flows.  相似文献   

16.
The starting of an axisymmetric convergent-divergent nozzle, with the result that supersonic flow is formed within almost the entire channel, is modeled, as applied to the hypersonic aerodynamic setup of the Institute of Mechanics of Moscow State University. A successful starting is realized when the nozzle is thrown in a uniform supersonic air flow at a fairly high Mach number. The steady flow structure is studied. It is numerically shown that in the convergent section of the channel there arises an oblique shock wave whose interaction with the nozzle axis leads to the formation of a reflected shock and a curvilinear Mach disk with a region of unsteady subsonic flow in the vicinity of the throat. The mathematical model is based on the two-dimensional Euler equations for axisymmetric gas flows.  相似文献   

17.
This paper reports on the implementation and testing, within a full non‐linear multi‐grid environment, of a new pressure‐based algorithm for the prediction of multi‐fluid flow at all speeds. The algorithm is part of the mass conservation‐based algorithms (MCBA) group in which the pressure correction equation is derived from overall mass conservation. The performance of the new method is assessed by solving a series of two‐dimensional two‐fluid flow test problems varying from turbulent low Mach number to supersonic flows, and from very low to high fluid density ratios. Solutions are generated for several grid sizes using the single grid (SG), the prolongation grid (PG), and the full non‐linear multi‐grid (FMG) methods. The main outcomes of this study are: (i) a clear demonstration of the ability of the FMG method to tackle the added non‐linearity of multi‐fluid flows, which is manifested through the performance jump observed when using the non‐linear multi‐grid approach as compared to the SG and PG methods; (ii) the extension of the FMG method to predict turbulent multi‐fluid flows at all speeds. The convergence history plots and CPU‐times presented indicate that the FMG method is far more efficient than the PG method and accelerates the convergence rate over the SG method, for the problems solved and the grids used, by a factor reaching a value as high as 15. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
This paper studies the properties of turbulent swirling decaying flow induced by tangential inlets in a divergent pipe using the realizable k–ε turbulence model and discusses the effects of the injector pressure and injection position. The results of transient solutions show that both the recirculation zone near the wall in upstream of the injectors and the vortex breakdown in downstream of the injectors increase in size during the whole period. A nearly axisymmetric conical breakdown is formed and its internal structure consists of two asymmetric spiral‐like vortices rotating in opposite directions. The stagnation point shifts slowly toward the pipe outlet over time. The maxima of the three velocity components, which are located near the wall, decrease gradually with streamwise direction. It can also be inferred that Mach number approaches 1.0 near the injector outlets. The velocities increase with the increasing injector pressure. However, its increasing trend is not significant. With the increase of the injection position, vortex breakdown moves in downstream direction and the pitch along the streamwise direction increases. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
We performed an experimental investigation of the flowfield of a transverse jet into supersonic flow with a pseudo-shock wave (PSW). In this study, we injected compressed air as the injectant, simulating hydrocarbon fuel. A back pressure control valve generated PSW into Mach 2.5 supersonic flow and controlled its position. The positions of PSW were set at nondimensional distance from the injector by the duct height (x/H) of ?1.0, ?2.5, and ?4.0. Particle image velocimetry (PIV) gave us the velocity of the flowfield. Mie scattering of oil mist only with the jet was used to measure the spread of the injectant. Furthermore, gas sampling measurements at the exit of the test section were carried out to determine the injectant mole fraction distributions. Gas sampling data qualitatively matched the intensity of Mie scattering. PIV measurements indicated that far-upstream PSW decelerated the flow speed of the main stream and developed the boundary layer on the wall of the test section. The flow speed deceleration at the corner of the test section was remarkable. The PSW produced nonuniformity in the main stream and reduced the momentum flux of the main stream in front of the injector. The blowing ratio, defined as the square root of the momentum flux ratio, of the jet and the main stream considering the effect of the boundary layer thickness was shown to be a useful parameter to explain the jet behavior.  相似文献   

20.
This paper describes the development of a lattice Boltzmann (LB) model for a binary gas mixture, and applications to channel flow driven by a density gradient with diffusion slip occurring at the wall. LB methods for single component gases typically use a non‐physical equation of state in which the relationship between pressure and density varies according to the scaling used. This is fundamentally unsuitable for extension to multi‐component systems containing gases of differing molecular masses. Substantial variations in the species densities and pressures may exist even at low Mach numbers; hence, the usual linearized equation of state for small fluctuations is unsuitable. Also, existing methods for implementing boundary conditions do not extend easily to novel boundary conditions, such as diffusion slip. The new model developed for multi‐component gases avoids the pitfalls of some other LB models. A single computational grid is shared by all the species, and the diffusivity is independent of the viscosity. The Navier–Stokes equation for the mixture and the Stefan–Maxwell diffusion equation are both recovered by the model. Diffusion slip, the non‐zero velocity of a gas mixture at a wall parallel to a concentration gradient, is successfully modelled and validated against a simple one‐dimensional model for channel flow. To increase the accuracy of the scheme, a second‐order numerical implementation is needed. This may be achieved using a variable transformation method that does not increase the computational time. Simulations were carried out on hydrogen and water diffusion through a narrow channel for varying total pressure and concentration gradients. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号