首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
杨康  吴振  高双胜  王吉 《实验力学》2016,(5):664-672
胶接工艺缺陷对单搭胶接接头的拉伸剪切性能有着重要的影响。为了研究不同单搭接胶接层厚度对不同材质复合材料层合板胶接性能的影响规律,通过喷水穿透法超声C扫描对试样的剪切区域进行无损检测,并分别采用1mm、2mm、4mm的胶层厚度,以碳纤维/玻璃纤维复合材料层合板为被粘物,进行单搭胶接拉伸剪切性能试验。检测及试验结果表明:当胶层厚度h1mm时,对于相同材料的被粘物,胶层厚度越大,试件胶接接头剪切强度越小;相同的粘接剂厚度,以碳纤维增强复合材料板为被粘物的试件胶接接头剪切强度大于以玻纤增强复合材料板为被粘物的试件胶接接头强度;胶粘剂与碳纤维被粘物表面的润湿效果要优于胶粘剂与玻纤被粘物表面的润湿效果。  相似文献   

2.
提出的一种缝合线计算模型,通过数值模拟计算与实验结果比较,得到缝合线计算模型中相关的弹性参数.对复合材料开口缝合补强结构进行有限元模拟计算,分析了孔边及邻近区域应变、应力的分布规律,得到不同缝合参数、孔边不同位置以及不同载荷条件下的应变、应力集中系数,并给出合理的孔口缝合参数设计方法及相关结论.研究结果表明:含孔拉伸试件在孔边θ=0°处,切向拉伸应力最大;在θ=90°处,切向压缩应力最大;在孔口0°和90°之间存在拉应力与压应力的转换点,缝合补强后,此转换点大约在θ=56°左右.  相似文献   

3.
多焊点情况下胶焊单搭接头的静力分析   总被引:1,自引:0,他引:1  
以胶接分析为基础,将焊点视为大剪切弹性模量胶粘荆,假设被粘体切应力沿厚度线性分布,胶层和焊点切应力沿厚度方向不变,建立了多焊点情况下胶焊单搭拉剪接头的线弹性应力解析模型.计算结果表明:被粘体正应力和胶层切应力解析解与有限元模型吻合得较好.对焊距的参数研究表明:胶焊单搭拉剪接头连接区纵向正应力和切应力随焊距减少而分布更均匀,峰值切应力下降,与前人的试验结果一致.  相似文献   

4.
胶焊复合连接技术兼具胶接和点焊的优点,它因提高结构强度和刚度而使车辆轻量化成为可能.以胶接理论为基础,考虑了被粘体剪切应变,将焊点视为大剪切弹性模量胶粘剂,胶层和焊点沿其厚度方向的剪应力不变,建立了胶焊单搭拉剪接头的线弹性应力解析模型.在应力模型基础上,将接头各组成部分看作是独立承载的拉伸和剪切弹簧单元,得到了其刚度解析模型.应力模型中的正应力和剪应力与有限元解吻合得较好,证明理论模型正确,参数研究中确定了影响胶焊单搭接头应力分布特征的关键耦合参数.  相似文献   

5.
在ANSYS有限元软件中建立三维有限元模型,对复合材料补片单面加固钢板进行数值模拟,使用内聚力单元模拟胶层脱粘和扩展过程,有限元模型计算结果与试验结果吻合较好,弹性极限载荷和失效载荷的相对误差分别为9.6%和4.2%。计算得到了模型在拉伸载荷作用下的载荷-位移曲线、胶层剪应力和剥离应力分布情况以及补片x轴向应力分布情况。结果表明,胶层端部最先达到极限强度后出现开裂,脱粘从补片两端开始逐渐向中心扩展,且扩展过程是非对称的;当补片发生部分脱粘后,补片应力集中在未脱粘处,承载长度逐渐减小、承载能力逐渐降低。  相似文献   

6.
彭晖  王博  张建仁  李树霖 《实验力学》2014,29(2):189-199
外贴FRP是重要的混凝土结构加固技术,但目前对外贴FRP加固混凝土结构的疲劳性能研究尚不充分,尤其对FRP-混凝土粘结界面的疲劳退化规律和破坏模式的研究更为缺乏。本文采用双面剪切试件,通过2个静载试件和4个疲劳试件的试验研究,考察了粘结长度和胶层厚度等因素对FRP-混凝土界面粘结疲劳性能的影响。通过分析沿粘结长度的FRP应变分布在疲劳循环过程中和疲劳后静载过程中的变化情况,讨论了不同粘结长度和粘结胶层厚度条件下的粘结界面疲劳退化规律和疲劳后静载性能。试验结果表明:胶层树脂-混凝土粘结界面是发生疲劳剥离破坏的薄弱环节;胶层厚度增大时,由于疲劳引起的界面损伤累积发展显著减小,疲劳后静载中胶层厚度较大试件的粘结承载力也更大;粘结长度增大时,界面粘结呈现更为明显的损伤退化,但由于试验粘结长度小于有效粘结长度,疲劳后的静粘结承载力仍更大。  相似文献   

7.
通过光滑试件及不同曲率半径缺口圆柱试件的拉伸试验,实现对镁合金MB2的单向及多向应力状态加载。结合数值模拟分析,研究了不同试件在拉伸加载过程中应力状态的变化。以应力三轴度为参数,给出了镁合金MB2等效破坏应变的变化规律,在应力三轴度-等效破坏应变空间建立了镁合金MB2的失效破坏准则。利用扫描电镜对试件断口形貌进行观察,分析了导致材料宏观延性变化的微观损伤机理,对不同应力状态下镁合金MB2的失效破坏行为做出了合理解释。  相似文献   

8.
本文研究了CVD制备的大尺寸石墨烯与柔性PET基底在拉伸变形过程中切向界面载荷传递的问题,采用原位拉曼光谱实验给出了加载过程中石墨烯的正应变、正应力以及界面切应力的分布曲线。分析表明,石墨烯与PET基底间的载荷传递存在四个阶段,分别是初始阶段、粘附阶段、滑移阶段和界面脱粘破坏阶段。在此基础上,本文对50μm、140μm、270μm和600μm四种尺寸石墨烯试件的界面力学性能进行测量,得到了不同尺寸石墨烯试件的界面力学性能参数,并初步给出了基底变形引起的石墨烯切向界面粘接能的变化,同时分析了试件尺寸对石墨烯界面力学性能的影响。实验结果表明,石墨烯材料和柔性基底最大切应力与临界脱粘切向界面粘接能等界面强度指标受到尺寸的显著影响,尺寸越小切向界面强度越高,反之,尺寸越大则越低。  相似文献   

9.
对不同铺层方式和不同胶层厚度的复合材料胶接单搭结构(SLJs)的连接性能进行了研究。使用内聚力模型模拟了SLJs的胶层退化及失效过程,通过与实验对比验证了数值模型的有效性;基于改进后的三维Hashin失效准则,模拟了复合材料层合板的损伤演化。结果表明:胶层的退化形态及失效规律与胶层粘连的复合材料铺层角度密切相关,当胶层两侧粘连的复合材料铺层角度为0°时,胶层会退化形成椭圆环状;当胶层两侧粘连的复合材料铺层角度为45°或-45°时,胶层会退化形成上下中心对称的水滴状;当胶层两侧粘连的复合材料铺层角度为90°时,胶层会退化成沙漏状。0°铺层与胶层相邻时,结构的极限失效载荷最大,此时复合材料未出现损伤;当90°铺层与胶层相邻,结构的极限失效载荷最小且复合材料出现基体损伤、纤维损伤和分层损伤。胶层厚度在0.05~0.5mm时,复合材料胶接单搭结构的连接性能最好,当胶层厚度大于0.5mm,结构的连接性能会大幅下降。  相似文献   

10.
建立不同金属厚度的金瓷试件梁有限元力学模型,分析界面处应力分布,利用真实口腔修复体的金属和瓷的力学参数,分别对常用的三种不同厚度为基底的金属梁试件进行了瓷层以0.2mm为梯度进行加厚,计算各梁的界面应力和位移,同时也对力学性能较好的金属层和瓷层一组进行了全瓷梁应力、位移计算分析.为了更加真实的反映计算结果,部分试件的数值分析与实验进行了比较.通过分析比较,结果显示金瓷界面处应力较大,是脱剥瓷常发生部位;金属层较薄的烤瓷体有更高的韧性,力学性能较金属基底厚的有更强的抗脱瓷能力;金属作为基底大大提高了试件的抗弯曲能力,比全瓷梁更增强了试件破坏能力.  相似文献   

11.
This paper describes an experimental arrangement to evaluate stress/strain fields in the process zone of asymmetric adhesively bonded joints. A transparent polycarbonate flexible beam was bonded to an aluminium alloy rigid block with an epoxy adhesive in a Single Cantilever Beam (SCB) configuration. The flexible adherend was loaded in the direction parallel to the initial crack front at constant rate. To monitor strains induced by bending and shear along the beam, electric strain gauges were attached to the upper surface of the flexible adherend. Thus strain distribution was measured above the bonded surface, which could be used to monitor crack propagation and investigate stress redistribution in the process zone. A Timoshenko beam lying on a Pasternak elastic foundation model was used for the analysis of experimental findings. Subsequently, the Digital Image Correlation technique was used to measure the flexible substrate in-plane displacement field in the vicinity of the crack front and to assess the specimen kinematics. We found that strain gauge instrumentation of the fracture mechanics specimen was a very sensitive technique for experimental analysis of crack propagation under complex loading, offering fine investigation of stress distribution in the cohesive zone.  相似文献   

12.
In order to improve the joint failure strength, an adhesively bonded smart composite pipe joint system has been developed by integrating electromechanical coupling piezoelectric layers with the connection coupler. It has been validated that the integrated piezoelectric ceramic layers can smartly reduce stress concentration in the adhesive layer bond-line under bending or axial tension loads. In this study, piezoelectric particle/fiber reinforced polymer composite was utilized to construct adhesively bonded smart composite pipe joint systems, in order to overcome the brittle characteristic of the piezoelectric ceramic layers and to facilitate joint construction. Since torsion is one of the dominating loading conditions in practice, the behavior of the newly developed smart pipe joint system subjected to torsion loading was investigated in-detail to evaluate the effect of the integrated piezoelectric reinforced polymer composite layer on the joint performance. Firstly, based on the first-order shear deformation theory, the fundamental equations with relevant boundary and continuity conditions were developed to theoretically model the smart pipe joint system subjected to torsion loading. Further, the analytical solutions for the mid-plane displacements and the shear and peel stresses in the adhesive layer were obtained by using the Levy solution and the state-space method. Finally, some numerical examples were presented to evaluate the detailed effect of the stacking sequence and thickness of the integrated composite piezoelectric layers in the connection coupler on reducing the stress concentration in the adhesive layer; the effect of the applied electric fields on shear and peel stresses in the adhesive layer was also illustrated.  相似文献   

13.
High interfacial stresses at the free edges of adherends are responsible for the debonding failure of adhesively bonded joints (ABJs). In this paper, a general stress-function variational method is formulated to determinate the interfacial shear and normal (peeling) stresses in ABJs in high accuracy. By extending authors’ prior work in stress analysis of bonded joints (Wu and Jenson, 2011), all the planar stress components in the adherends and adhesive layer of an ABJ are expressed in terms of four unknown interfacial stress functions, which are introduced at the upper and lower surfaces of the adhesive layer. A set of governing ordinary differential equations (ODEs) of the four interfacial stress functions is obtained via minimizing the complimentary strain energy of the ABJ, which is further solved by using eigenfunctions. The obtained semi-analytic stress field can satisfy all the traction boundary conditions (BCs) of the ABJ, especially the stress continuity across the bonding lines and the shear-free condition at the ends of adherends and adhesive layer. As an example, the stress field in an adhesively single-sided strap joint is determined by the present method, whose numerical accuracy and reliability are validated by finite element method (FEM) and compared to existing models in the literature. Parameter studies are performed to examine the dependencies of the interfacial stresses of the exemplified ABJ upon the geometries, moduli and temperature change of the adherends and adhesive layer, respectively. The present method is applicable for scaling analysis of joint strength, optimal design of ABJs, etc.  相似文献   

14.
Progressive damage and fracture of adhesively bonded graphite/epoxy composite structures are evaluated via computational simulation. Load induced damage in both the adhesive bond and the adjoining laminate is considered. An integrated computer code is used for the simulation of structural degradation under loading. Damage initiation, growth, accumulation, and propagation to fracture are included in the simulations. Results show in detail the damage progression sequence and structural fracture resistance during different degradation stages. Design implications with regard to damage tolerance of adhesively bonded joints are examined. Influence of the type of loading as well as adhesive thickness on damage initiation and progression for an adhesively bonded composite structure are investigated.  相似文献   

15.
Incorporating with the high electro-mechanical coupling performance of piezoelectric materials, design and analysis of an adhesively bonded smart composite pipe joint system were conducted. In this joint system, piezoelectric layers were integrated into the joint coupler in order to reduce stress concentration in the joint adhesive layer. To theoretically verify the composite action and efficiency of the integrated piezoelectric layers, an electro-mechanical model based on the first-order shear deformation theory was established. This model was able to clarify the energetic characteristics of the proposed joint system on the improvement in the joint strength, which was under the action of a bending moment at the joint ends. The state-space method was utilized to obtain the final analytical solutions, including the peel and shear stress distributions in the adhesive layer. Finally, some numerical examples were calculated to evaluate the effect of the detailed stacking sequence and size of the integrated piezoelectric layers on reducing the stress concentration in the adhesive layer as well as the applied electric fields. These numerical results validated the integrity of the developed adhesively bonded smart composite pipe joint system.  相似文献   

16.
Delamination in sandwich structures along the interface between the face sheet and the core, or along the adherend/adhesive interface in adhesively bonded joints, is one of the most common failure modes of this type of tri-layer structure. This delamination is usually modeled as an interface crack problem, for which the energy release rate and phase angle can be calculated using interface fracture mechanics solutions. Existing interface fracture mechanics solutions, however, ignore the effect of transverse shear deformation, which can be significant for short crack. In an effort to overcome this shortcoming, this study presents new analytical solutions for the energy release rate and for the phase angle of the interface crack in sandwich structures or adhesively bonded joints. Since the new solutions incorporate relative rotation at the tip of the delamination, transverse shear effects are taken into account in this study. Typical delaminated sandwich and adhesively bonded joint specimens are analyzed by using the new solutions, as well as by the existing solutions. The energy release rate predicted by the present model agrees very well with that predicted by FEA, and furthermore it is considerably more accurate relative to existing models. As the existing model neglects the transverse shear force, it underestimates the total energy release rate. A stress field analysis is also conducted in this study in order to clarify some misunderstandings in the literature on the determination of the phase angle of adhesively bonded joints using an interface stress-based method.  相似文献   

17.
本文应用弹塑性有限元分析胶接补强的含裂纹薄板结构,剪切单元被改进使之可连结平面等参单元并用于分析胶层应力。计算了补强后裂纹板的应力强度因子,并将计算结果与实验数据作了比较,分析表明,胶接补强可显著降低裂尖的应力集中,使裂纹板内应力分布趋于均匀。  相似文献   

18.
卫丰  卢智先  陈思懿 《力学学报》1990,22(4):495-499
本文应用弹塑性有限元分析胶接补强的含裂纹薄板结构,剪切单元被改进使之可连结平面等参单元并用于分析胶层应力。计算了补强后裂纹板的应力强度因子,并将计算结果与实验数据作了比较,分析表明,胶接补强可显著降低裂尖的应力集中,使裂纹板内应力分布趋于均匀。  相似文献   

19.
The problem of interaction between crack-like interface defects subjected to a remote tensile stresses in an elastic bi-plane is considered using a model of an adhesively bonded asymmetric weak zone. In this model, the opening displacements are prescribed by a basis function which contains free parameters and automatically accounts for the asymmetry and the “true” stress–strain field behavior near the tips. The corresponding adhesive forces which can be very different by physical origin, are determined a posteriori. The limiting situations: transformation of one of the defects to the nucleus of a cohesive crack or the rupture of an obstacle between the weak zones are analytically described.  相似文献   

20.
This paper presents a novel formulation and analytical solutions for adhesively bonded composite single lap joints by taking into account the transverse shear deformation and large deflection in adherends. On the basis of geometrically nonlinear analysis for infinitesimal elements of adherends and adhesive, the equilibrium equations of adherends are formulated. By using the Timoshenko beam theory, the governing differential equations are expressed in terms of the adherend displacements and then analytically solved for the force boundary conditions prescribed at both overlap ends. The obtained solutions are applied to single lap joints, whose adherends can be isotropic adherends or composite laminates with symmetrical lay-ups. A new formula for adhesive peel stress is obtained, and it can accurately predict peel stress in the bondline. The closed-form analytical solutions are then simplified for the purpose of practical applications, and a new simple expression for the edge moment factor is developed. The numerical results predicted by the present full and simplified solutions are compared with those calculated by geometrically nonlinear finite element analysis using MSC/NASTRAN. The agreement noted validates the present novel formulation and solutions for adhesively bonded composite joints. The simplified shear and peel stresses at the overlap ends are used to derive energy release rates. The present predictions for the failure load of single lap joints are compared with those available in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号