首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
将萃取-溶剂热法制备的二硫化钼微球(MS-MoS2)和商业级胶体二硫化钼(CC-MoS2)添加到液体石蜡(LP)中,采用四球摩擦磨损试验机和SRV微动摩擦磨损试验机对润滑体系的极压性能和抗磨减摩性能进行对比研究,利用扫描电子显微镜和X射线光电子能谱仪对磨斑表面形貌进行观察分析.结果表明:萃取剂Cyanex 301对MoS2具有良好的表面修饰作用;添加MoS2能够有效改善基础油的极压性能和抗磨减摩性能;当MoS2质量分数为0.5%时,Cyanex 301修饰MoS2 LP的摩擦系数和磨损体积损失比CC-MoS2 LP分别降低了15.4%和81.7%;其磨损机理可归因于边界润滑条件下的化学吸附膜、化学反应膜、化学沉积膜以及滚动摩擦.  相似文献   

2.
纳米铜添加剂改善钢-铝摩擦副摩擦磨损性能的研究   总被引:3,自引:3,他引:3  
采用环-块摩擦磨损试验机对比考察了钢-铝摩擦副在液体石蜡与含纳米铜颗粒液体石蜡润滑下的摩擦磨损特性,研究了对纳米铜添加剂添加量与载荷对其摩擦磨损性能的影响,通过对磨损表面粗糙度、形貌及其主要元素的能谱分析,探讨了纳米铜颗粒作为添加剂时钢-铝摩擦副的润滑机制.结果表明:含0.25%纳米铜颗粒液体石蜡时,钢-铝摩擦副的摩擦磨损性能最优;在不同载荷下纳米铜颗粒可以改善铝的摩擦磨损性能,特别在中等载荷(50~125 N)下,其抗磨减摩作用更明显;纳米铜颗粒能够在磨损表面形成一层低剪切强度的铜保护膜,有效地避免粘着磨损,同时阻止铝元素向钢表面的转移,从而显著改善钢-铝摩擦副的摩擦磨损性能.  相似文献   

3.
文中考察了变载、变速条件下表面修饰蛇纹石超细粉体作为矿物基础油添加剂的摩擦学性能,利用扫描电镜、能谱仪、纳米压痕仪等对比分析了蛇纹石添加剂形成的摩擦反应膜和基础油润滑下的磨损表面微观形貌、元素分布及微观力学性能.在此基础上,通过改变旋转滑动试验过程中的载荷/速度比,建立了基础油/摩擦反应膜和基础油/普通磨损表面润滑体系的Stribeck曲线.结果表明:蛇纹石超细粉体作为润滑油添加剂形成的摩擦反应膜具有较高的硬度和近似于金属材料的弹性模量,氧化物颗粒的嵌入进一步改善了摩擦反应膜的微区纳米力学性能,同时膜层的多孔结构可起到储油和捕获磨粒的双重作用,从而使摩擦反应膜在边界和混合润滑状态下表现出优异的摩擦学性能.  相似文献   

4.
传统的船舶尾轴油润滑轴承的润滑油泄露造成了严重的海洋污染,逐渐被水润滑轴承取代,但水较差的承载能力要求水润滑轴承具有良好的减磨耐磨性能. 通过HDPE与PA66的共混材料研究尼龙润滑填料和表面织构协同作用对水润滑轴承摩擦磨损性能的影响,利用超景深三维显微系统测量共混材料试样浸泡后的表面纹理结构,利用CBZ-1摩擦磨损试验机对试样进行摩擦试验并记录摩擦系数,利用表面轮廓仪和扫描电镜(SEM)观察试样磨损形貌并分析其磨损机理. 试验表明:PA66的添加能优化共混材料的摩擦学性能. PA66的水溶胀性使共混材料表面形成微凸织构,降低摩擦系数和减轻表面磨损;PA66的存在可使共混材料在摩擦过程中在对摩铜盘表面形成转移膜,有效保护摩擦副表面,减轻磨损.   相似文献   

5.
蛇纹石热处理产物作为润滑油添加剂的摩擦学性能   总被引:2,自引:1,他引:1  
考察了表面修饰蛇纹石超细粉体及其热处理产物作为液体石蜡添加剂的摩擦学性能,研究了热处理温度对蛇纹石添加剂抗磨、减摩性能的影响,通过测量摩擦表面接触电阻,监测了摩擦化学反应膜的动态形成过程,利用扫描电镜、能谱仪等分析了摩擦表面形貌及元素分布.结果表明:蛇纹石粉体在摩擦表面释放氧原子,形成氧化物颗粒增强氧化膜,显著降低摩擦,改善液体石蜡的润滑性能.300~600 ℃的热处理在提高粉体活性的同时,保持蛇纹石的层状结构,增强其解理释氧和对摩擦表面的吸附能力,从而促进摩擦化学反应膜的形成,进一步改善蛇纹石的摩擦学性能.当热处理温度高于850 ℃后,蛇纹石粉体的层状结构被破坏,形成大量镁橄榄石和顽火辉石硬质相,加重磨损.  相似文献   

6.
采用激光加工技术在不锈钢表面构造深度不同的沟槽型织构图案,通过UMT摩擦磨损试验机测试了不同织构深度的不锈钢表面在PAO6油润滑条件下的摩擦磨损性能,利用表面轮廓仪和扫描电镜(SEM)对摩擦前后的沟槽形貌进行表征分析,采用计算流体动力学(CFD)方法对试验进行模拟并计算,结合ANSYS Fluent软件模拟分析结果,探究了沟槽织构深度对不锈钢表面在油润滑条件下的摩擦学性能的影响机理. 研究结果表明:加工的沟槽织构及其织构深度显著影响不锈钢表面在PAO油润滑条件下的摩擦磨损行为,织构深度为10 μm的不锈钢表面获得最好的抗磨和减摩效果,与未织构表面相比,其摩擦系数与磨痕宽度降低了60%以上. 这主要是由于织构深度为10 μm的不锈钢表面在摩擦过程中,润滑油通过其收敛区域时产生了很好的楔效应,润滑油产生的升力较大,改善了该织构表面在摩擦过程的润滑状态,从而呈现很好的摩擦学性能.   相似文献   

7.
利用SRV摩擦磨损试验机考察了激光微精处理合金铸铁的摩擦磨损性能,利用扫描电子显微镜分析了激光淬火组织剖面微结构及磨斑表面形貌,同时采用X射线光电子能谱仪(XPS)分析了激光微精处理合金铸铁的表面成分及典型元素化学状态.结果表明,激光处理的合金铸铁具有理想的表面形貌和较高的表面硬度,在含添加剂的油润滑条件下,其抗磨性能大幅度提高.3种添加剂的承载能力顺序为二烷基二硫代磷酸锌>磷酸三甲酚酯>硫化异丁烯.二烷基二硫代磷酸锌与激光微精处理的合金铸铁磨痕表面发生摩擦化学作用,形成由微量硫酸盐、磷酸盐及相应的氧化产物组成的表面润滑与防护薄膜,从而使得激光微精处理合金铸铁的摩擦磨损性能明显改善.  相似文献   

8.
研究了稀土元素(RE)处理炭纤维表面的最佳添加量和不同炭纤维表面处理对聚四氟乙烯(PTFE)复合材料在干摩擦条件下摩擦磨损性能的影响,并利用扫描电子显微镜对其磨损表面进行观察和分析.结果表明:当稀土元素在表面改性剂中的含量为0.3%时,炭纤维填充聚四氟乙烯复合材料的摩擦磨损性能最佳;在干摩擦条件下,表面处理炭纤维填充聚四氟乙烯复合材料的摩擦系数比未经处理炭纤维填充聚四氟乙烯复合材料的低,且其耐磨性较好;稀土处理使得复合材料的界面强韧性得到明显改善,从而提高了其摩擦磨损性能.  相似文献   

9.
在有和无超声振动条件下,分别考察了含不同质量百分数n-SiO2添加剂的减摩抗磨性能,初步探讨了超声振动下纳米二氧化硅(n-SiO2)添加剂的润滑机理.结果表明:超声振动通过减小纳米微粒所受的正压力、促进纳米微粒滚动及增加摩擦表面的活性3种方式改善摩擦表面的润滑状态.超声振动使n-SiO2润滑下的磨痕深度下降,表面硬度降低,磨损表面Si元素含量增加,有效地改善了摩擦表面的润滑状态.在试验范围内,超声振动对0.5%n-SiO2添加剂的减摩抗磨性能影响效果最显著,摩擦副间的摩擦系数和45#钢表面的磨损体积量分别降低了12%和34%.  相似文献   

10.
油酸修饰TiO2纳米微粒水溶液润滑下GCr15钢摩擦磨损性能研究   总被引:21,自引:5,他引:16  
用四球摩擦磨损试验机考察了脂肪酸修饰TiO2纳米微粒水溶液润滑下GCr15钢的摩擦磨损性能,并用电子探针和X射线光电子能谱研究了钢球磨损表面边界润滑膜的化学组成和元素分布.摩擦磨损试验结果表明:脂肪酸修饰TiO2纳米微粒在水中具有较好的润滑性能、良好的极压性能及较高的承载能力.添加质量分数为0.1%~1.0%的油酸TiO2纳米微粒可使水的承载能力提高6~12倍,烧结负荷提高51~100%,抗磨减摩性能也有较大提高,卡咬负荷由150N提高至1000~1800N.磨损表面分析表明:油酸TiO2纳米微粒在较高负荷(>300N)下发生了摩擦化学反应,生成含TiO2及油酸复合物的边界润滑膜,从而起减摩抗磨作用  相似文献   

11.
苏鹏  熊云  刘晓  杨鹤 《摩擦学学报》2017,37(1):83-89
收集柴油发动机尾气碳烟,借助扫描电子电镜/能谱仪、高分辨率透射电子显微镜、X射线衍射仪、拉曼光普仪、X射线光电子能谱仪分析了碳烟颗粒的形貌、结构及表面官能团,采用SRV IV摩擦磨损试验机考擦了碳烟对柴油机油摩擦学特性的影响.结果表明:碳烟颗粒由C、O两种元素构成,平均粒径为34 nm,外壳包裹着十几层石墨片层的洋葱头结构.碳烟质量分数在3%以内可以改善柴油机油减摩性能,对其抗磨性影响小;当碳烟质量分数超过3%时会引起摩擦系数升高和磨损加剧.分析其原因,一方面碳烟颗粒特殊洋葱头结构使其进入摩擦界面后随摩擦副的往复运动而滚动,起到滚动轴承的作用,从而使摩擦系数降低;另一方面当碳烟含量过高时,碳烟会破坏润滑油膜,阻碍润滑油进入摩擦界面,导致磨损加剧,摩擦系数升高.  相似文献   

12.
采用SRV摩擦磨损试验机评价了磷酸三甲酚酯(TCP)、磷酸二丁酯(DBP)、十二胺(DA)和磷酸胺盐(PAS)抗磨添加剂在液体石蜡中对钢-铝摩擦副摩擦磨损性能的影响。采用X射线光电子能谱仪分析铝试磨痕表面边界润滑膜中的P和N元素的化学状态。结果表明,含P抗磨添加剂可以有效提高铝合金的耐磨性,而其中以磷氮剂的效果最好。其它含磷添加剂也可以有效地降低磨损。XPS分析表明,在铝合金磨损表面形成了含磷酸铝  相似文献   

13.
含氮有机物修饰的纳米三氟化镧的摩擦学性能研究   总被引:39,自引:4,他引:39  
用四球摩擦磨损试验机考察了含氮有机物修饰的纳米三氟化镧在液体石蜡中的摩擦学性能,并用X射线光电子能谱(XPS)对其摩擦化学作用机理进行了研究,研究结果表明,含氮有机物修饰的纳米三氟化镧在液体石 具有良好的极压、抗磨及减摩性能,其在摩擦过程中发生了摩擦化学反应,在摩擦表面形成了含碳、氮有机物的物理吸附膜,含氧化镧、氟化亚铁、四氧化三封闭我机物的化学反应膜。  相似文献   

14.
采用四球摩擦磨损试验机和SRV摩擦磨损试验机考察了 4种酰胺化合物对钢 -钢和钢 -铝摩擦副摩擦磨损性能的影响 ,用X射线光电子能谱 (XPS)分析了丙烯酰胺润滑下铝合金磨斑表面元素的化学状态 .结果表明 :对钢 -钢摩擦副 ,酰胺类化合物表现出一定的抗磨减摩作用 ,对钢 -铝摩擦副 ,丙烯酰胺和乙酰胺表现出良好的抗磨减摩性能 .XPS分析结果显示 ,铝合金磨斑表面存在 3种价态的氮的化合物及 2种价态的铝 ,表明其磨损表面生成了复杂的反应膜  相似文献   

15.
利用SRV摩擦磨损试验机对比考察了液体石蜡润滑时硬质合金基体上金刚石薄膜和石墨 /金刚石复合薄膜的摩擦学性能 ,采用扫描电子显微镜对试样和磨痕表面形貌进行了观察分析 ,并进而探讨了磨损机理 .结果表明 ,在润滑条件下 ,石墨 /金刚石复合薄膜的摩擦系数和磨损体积损失均较金刚石薄膜的小 ,金刚石薄膜和石墨 /金刚石复合薄膜的主要磨损机理均为亚微断裂磨损 ,而石墨膜可以有效地减轻亚微断裂磨损  相似文献   

16.
摩擦诱导生物燃料碳烟微粒组分与结构变化机制研究   总被引:1,自引:1,他引:0  
摩擦会诱导碳烟微粒参与润滑膜形成,但对润滑界面碳烟微粒组分和结构变化研究较少.为了进一步丰富碳烟摩擦学理论,在端面摩擦试验机上,分别以3%(质量分数)生物燃料碳烟(BS)污染的液体石蜡和CD SAE 15W-40全配方油为润滑油,探索了摩擦力诱导及Ti F3和Fe F3的催化作用下,BS微粒组分和结构的变化情况.利用XPS对摩痕区域表面膜碳元素Csp2和Csp3含量进行了定性定量表征;利用拉曼光谱仪分析了表面膜碳烟微粒结构变化,并对BS微粒组分和结构变化机制进行了讨论.结果表明:在294 N、1 500 r/min,催化剂Ti F3和Fe F3存在下,无定型碳含量降低(R3降低),表面有序化石墨烯含量明显增多(ID2/IG’增加),表面石墨烯缺陷位点明显增多(ID1/IG’).碳烟微粒在摩擦剪切及摩擦热的作用下,其外层结构容易发生剥离并在摩擦副表面形成润滑膜,然后因Ti F3和Fe F3的催化作用,润滑膜中碳元素会向有序化石墨烯转化.  相似文献   

17.
在四球摩擦磨损机上考察了润溶性钡盐添加剂与月桂酸钛酸酯复配时的摩擦磨损性能,并对多元氧化物的表面微观物理性质及作用机理进行了讨论。研究结果表明,油溶性钡盐添加剂与月桂酸酸钛酸酯之间具有协同减摩抗磨效应,从而提高无卡咬负荷和改善抗磨性能。钢球磨损表面X射线光电子能谱分析结果表明,表面生成了Ti和Ba等的多元氧化物。  相似文献   

18.
苏鹏  熊云  刘晓  杨鹤  范林君 《摩擦学学报》2017,37(2):206-211
通过SRV IV摩擦磨损试验机考察了柴油机碳烟对柴油机缸套/活塞环摩擦副摩擦磨损性能的影响,借助扫描电子显微镜及能谱仪、三维表面形貌仪和拉曼光谱仪探讨了碳烟颗粒的摩擦学作用机理.结果表明:碳烟颗粒在高载荷时可以降低缸套/活塞环摩擦副间的摩擦系数,但在低载荷时对摩擦系数影响不大;碳烟颗粒会加剧缸套的磨损,其磨损形式主要为磨粒磨损.碳烟颗粒表现出减摩性的主要原因是其外层的乱层石墨在摩擦热和剪切作用下发生了剥离并在摩擦副表面形成了润滑膜.  相似文献   

19.
以油胺为原料,通过在氯苯中简单加热回流,并经后续硅胶柱层析纯化,制备了烷基包覆、室温下呈液态的蓝光碳点.高分辨透射电子显微镜(HR-TEM)、红外光谱和荧光光谱证明了烷基化蓝光碳点的成功制备. 差示扫描量热(DSC)证明了碳点的室温液体属性. 将碳点添加到石蜡基基础油中,发现其与基础油具有良好的相容性,并且混合体系呈现出良好的长效稳定性. 研究了碳点添加量对基础油减摩抗磨效果的影响. 与纯石蜡基基础油相比,添加碳点能明显改善其摩擦学行为,当碳点添加质量分数为0.1% 时,摩擦系数和磨损体积均有所减小;当碳点添加质量分数为1.0% 时,摩擦系数达到最小. 这是由于在摩擦过程中,摩擦副表面形成了1层碳膜和四氧化三铁,阻止了摩擦副间的直接接触.   相似文献   

20.
咪唑啉硼酸酯的制备及其减摩抗磨机理研究   总被引:3,自引:0,他引:3  
合成出4种咪唑啉硼酸酯润滑油添加剂,在四球摩擦磨损试验机和SRV微动摩擦磨损试验机上评价了4种添加剂在液体石蜡中的摩擦磨损性能,考察了其抗腐蚀性及热稳定性,并采用扫描电子显微镜和X射线光电子能谱仪观察分析钢球磨损表面形貌及其表面膜中元素的化学状态.结果表明,所合成的添加剂具有良好的抗腐蚀性和热稳定性及极压抗磨减摩性能.这归因于含MBA-2的液体石蜡在摩擦过程中发生摩擦化学反应并生成由B2O3、氧化铁及含氮有机物等组成的混合膜.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号