首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
用数值模拟方法对固定圆柱湍流涡脱落频率与弹性圆柱湍流涡致振动频率特性进行了研究,湍流计算模型采用标准κ-ε模型,压力泊松方程提法基于非交错网格系统.研究结果表明:固定圆柱湍流绕流涡脱落频率基本不随雷诺数而变,对于同一固有频率弹性圆柱,涡振频率基本不随雷诺数而变;对于某一固定雷诺数流动涡振频率在一定范围内与系统固有频率有关.  相似文献   

2.
流向振荡圆柱绕流的格子Boltzmann方法模拟   总被引:1,自引:0,他引:1  
龚帅  郭照立 《力学学报》2011,43(1):11-17
用一种新近发展起来的格子Boltzmann方法(LBM)在相对较小的雷诺数(Re≤200)条件下模拟了不可压缩的流向振荡圆柱绕流问题,考查了涡脱落模态和升阻力特性.通过模拟,在近尾流区发现了实验研究中已经发现的对称/反对称的涡脱落模态,包括有些传统数值方法未发现的模态.研究了频率锁定区域的范围及其与振幅的关系,发现振幅越大,发生锁定的频率区域越宽.此外还对升阻力进行了定量意义的模拟,研究了振荡频率和振幅与升阻力的关系.  相似文献   

3.
张宇飞  肖志祥  符松 《力学学报》2007,39(3):408-416
通过求解采用ALE方法描述的运动坐标系Navier-Stokes方程组,分析均匀来流下雷诺 数为150的静止和流向振荡的圆柱绕流. 主要研究了强迫振荡频率和较大振幅比 (A/D=0.3-1.2)对圆柱升力、阻力变化特性以及涡脱落模态的影响. 研究表 明,流向振荡圆柱绕流存在多种涡脱落模态,如对称S以及反对称A-I, A-III, A-IV等多种形式;比较研究结果,拓展了各模态下对应的锁定区域,并将其分为5个 子区;A-I模态中圆柱受力较以前所知更复杂;通过分析计算结果,发现最大加速度 比Af_{c}^{2}/Df_{s0}^{2}可能是涡脱落模态(尤其是对称S模态)最有效的控制参数.  相似文献   

4.
涡激诱导并列双圆柱碰撞数值模拟研究   总被引:5,自引:4,他引:1  
杨明  刘巨保  岳欠杯  丁宇奇  王明 《力学学报》2019,51(6):1785-1796
圆柱类结构物的涡激振动是工程中较为常见的一种现象,如果圆柱结构物之间的距离较小, 就会产生涡激诱导碰撞现象,而涡激碰撞会比涡激振动对结构物疲劳破坏产生更严重的威胁.采用浸入边界法模拟流体中的动边界问题,避免了传统贴体网格方法在求解流体中存在固体间碰撞问题时出现数值求解不稳定问题,采用有限元方法对圆柱的运动和碰撞进行求解,通过数据回归方法建立了流体流动条件下的润滑模型,对不同间隙比下涡激诱导并列双圆柱振动及碰撞过程进行了数值模拟, 数值结果表明,如果两圆柱产生了碰撞将会有连续的碰撞发生, 碰撞时出现了多阶频率,振动主频率要比无碰撞时大, 两圆柱碰撞时的相对速度比自由来流速度小;当两圆柱相互接近时, 随着涡环分离角度的逐渐倾斜, 横向流体力先逐渐减小,当两圆柱间涡环开始相互影响发生挤压时, 横向流体力开始逐渐增大;当两圆柱开始反弹时, 两圆柱间形成了低压区, 改变了横向流体阻力的方向,使两圆柱又产生了接近运动,如此反复从而产生了碰撞后横向流体力和圆柱速度的振荡现象.   相似文献   

5.
圆柱类结构物的涡激振动是工程中较为常见的一种现象,如果圆柱结构物之间的距离较小,就会产生涡激诱导碰撞现象,而涡激碰撞会比涡激振动对结构物疲劳破坏产生更严重的威胁.采用浸入边界法模拟流体中的动边界问题,避免了传统贴体网格方法在求解流体中存在固体间碰撞问题时出现数值求解不稳定问题,采用有限元方法对圆柱的运动和碰撞进行求解,通过数据回归方法建立了流体流动条件下的润滑模型,对不同间隙比下涡激诱导并列双圆柱振动及碰撞过程进行了数值模拟,数值结果表明,如果两圆柱产生了碰撞将会有连续的碰撞发生,碰撞时出现了多阶频率,振动主频率要比无碰撞时大,两圆柱碰撞时的相对速度比自由来流速度小;当两圆柱相互接近时,随着涡环分离角度的逐渐倾斜,横向流体力先逐渐减小,当两圆柱间涡环开始相互影响发生挤压时,横向流体力开始逐渐增大;当两圆柱开始反弹时,两圆柱间形成了低压区,改变了横向流体阻力的方向,使两圆柱又产生了接近运动,如此反复从而产生了碰撞后横向流体力和圆柱速度的振荡现象.  相似文献   

6.
柏威  鄂学全 《力学学报》2004,36(4):466-471
研究了雷诺数Re=200, 1000, 线速度比$\alpha =0.5$, 2.0, 4.0, 强迫振荡频率$f_{s}=0.1\sim 2.0$情况下的旋转振荡圆柱绕流问题. 通 过基于非结构同位网格有限体积法对Navier-Stokes方程进行数值求解. 对流项、扩 散项和非恒定项的离散格式均具有二阶精度,利用SIMPLE算法处理压力-速度耦合. 计算得到了作用力系数随不同控制参数的变化规律. 通过对升力系数的频谱分析得到 自然脱落频率和强迫振荡频率下的作用力振幅. 通过对不同频率作用力幅值的分析, 得到频率之间的竞争关系,进而定量地给出了不同尾迹涡脱落模式的分区图.  相似文献   

7.
当两个圆柱斜置排列并靠得较近时,绕流下游圆柱的流动明显地不同于单一圆柱.本文研究了下游圆柱压力分布受到的影响,并着重于用FFT来分析圆柱表面某些特征点上的压力频谱,研究频谱与圆柱之间的相对距离和位置的关系.当圆柱间距较远时,压力振荡的频率与单圆柱卡门涡节的频率相接近,随着横向间距的接近,频率逐渐降低,然而当两圆柱十分接近时,外侧压力振荡的频率继续降低,但圆柱内侧压力振荡的频率却突然提高,出现了一个圆柱体两侧作用有不同频率压力的情况.  相似文献   

8.
从不可压非定常N-S方程出发,首次数值求解了均匀来流中圆柱作周向旋转振荡的黏性绕流问题。探讨了旋转角速度振幅、振荡频率及Re数等因素对流场结构及其非定常演化过程的影响,并根据计算结果,给出了在旋转振动频率。速度振幅平面内流场涡结构的分区图。  相似文献   

9.
均匀来流中旋转圆柱黏性绕流的数值研究   总被引:3,自引:0,他引:3  
陆夕云  庄礼贤 《力学学报》1994,26(2):233-238
从不可压非定常N-S方程出发,首次数值求解了均匀来流中圆柱作周向旋转振荡的黏性绕流问题。探讨了旋转角速度振幅、振荡频率及Re数等因素对流场结构及其非定常演化过程的影响,并根据计算结果,给出了在旋转振动频率。速度振幅平面内流场涡结构的分区图。  相似文献   

10.
圆柱绕流涡脱落诱发较大的振动和声,如何有效地抑制值得关注.利用大涡模拟技术求解了Navier-Stokes方程,得到了涡脱落频率,升力脉动幅值及平均阻力系数.计算表明二维模拟不能体现流动基本特征,三维计算与实验吻合较好.为了抑制涡脱落,在直径为D的圆柱表面装入间距为1D,直径为0.0167D的O型环.通过升力、速度谱分析以及柱向横截面流场分析可知,在光滑圆柱外表面加入O型环能诱发流体边界层分离,有效地抑制涡脱落现象,升力脉动和观测点速度脉动幅值几乎完全消失,阻力系数也略微降低,适合在实际工程中采用.  相似文献   

11.
Vortex shedding from an oscillating circular cylinder is studied by numerical solutions of the two-dimensional unsteady Navier–Stokes equations. A physically consistent method is used for the reconstruction of velocity fluxes which arise from discrete equations for the mass and momentum balances. This method ensures a second-order accuracy. Two phenomena are investigated and, in both cases, the cylinder oscillation is forced. The first is the flow induced by the harmonic in-line oscillation of cylinder in water at rest. The Reynolds number is equal to 100 and the Keulegan–Carpenter number is equal to 5. A comparison of phase-averaged velocity vectors between measurements and predictions is presented. Applying the widely used model of Morison to the computed in-line force history, the drag and the inertia coefficients are calculated and compared for different grid levels. Using these to reproduce the force functions, deviations from those originally computed are revealed. The second problem is an investigation of a transversely oscillating cylinder in a uniform flow at fixed Reynolds number equal to 185. The cylinder oscillation frequency ranges between 0·80 and 1·20 of the natural vortex-shedding frequency, and the oscillation amplitude is 20% of the cylinder diameter. As the frequency of excitation of the cylinder increases relative to the inherent vortex formation frequency, the initially formed concentration of vorticity moves closer to the cylinder until a limiting position is reached. At this point, the vorticity concentration abruptly switches to the opposite side of the cylinder. This process induces distinct changes of the topology of the corresponding streamline patterns.  相似文献   

12.
A numerical study is performed of flow behind a rotationally oscillating circular cylinder in a uniform flow by solving the two-dimensional incompressible Navier-Stokes equations. The flow behavior in lock-on regime and the timing of vortex formation from the oscillating cylinder are studied. When the frequency of excitation of the cylinder is in the vicinity of the natural vortex formation frequency, a lock-on vortex formation regime appears. As the excitation frequency being increased relative to the natural frequency the initially formed vorticity concentration switches to the opposite side of the cylinder. The effects of oscillating frequency and amplitude on the vortex structures formed in the near wake of the cylinder are also investigated. Based on the present calculated results, some complicated vortex patterns are identified and are consistent with the previous experimental visualizations.  相似文献   

13.
Numerical results are presented for an oscillating viscous flow past a square cylinder with square and rounded corners and a diamond cylinder with square corners at Keulegan–Carpenter numbers up to 5. This unsteady flow problem is formulated by the two-dimensional Navier–Stokes equations in vorticity and stream-function form on body-fitted coordinates and solved by a finite-difference method. Second-order Adams-Bashforth and central-difference schemes are used to discretize the vorticity transport equation while a third-order upwinding scheme is incorporated to represent the nonlinear convective terms. Since the vorticity distribution has a mathematical singularity at a sharp corner and since the force coefficients are found in experiments to be sensitive to the corner radius of rectangular cylinders, a grid-generation technique is applied to provide an efficient mesh system for this complex flow. Local grid concentration near the sharp corners, instead of any artificial treatment of the sharp corners being introduced, is used in order to obtain high numerical resolution. The elliptic partial differential equation for stream function and vorticity in the transformed plane is solved by a multigrid iteration method. For an oscillating flow past a rectangular cylinder, vortex detachment occurs at irregular high frequency modes at KC numbers larger than 3 for a square cylinder, larger than 1 for a diamond cylinder and larger than 3 for a square cylinder with rounded corners. The calculated drag and inertia coefficients are in very good agreement with the experimental data. The calculated vortex patterns are used to explain some of the force coefficient behavior.  相似文献   

14.
The instantaneous velocity field of a circular cylinder wake is built using a PIV technique when a small amount of viscoelastic liquid is introduced through the cylinder. It is shown that the viscoelastic fluid slows down the vorticity concentration and produces a street of partially rolled-up vortices. The underlying mechanism appears very analogous to that of a surface tension in the Kelvin–Helmholtz instability. The partial roll-up is studied in terms of the Weiss determinant. This quantity is a local measurement of the spatial separation between the strain and vorticity. In the viscoelastic wake, the Weiss determinant reaches much lower values than in the Newtonian wake. This result shows that the elasticity prevents the clear separation between vorticity and strain during the roll-up process. Since the Weiss determinant is directly related to the pressure field, it suggests that elasticity can drastically modify the pressure levels even when vorticity and strain levels are unaffected.  相似文献   

15.
The numerical study of the flow past a circular cylinder forced to oscillate transversely to the incident stream is presented herein, at a fixed Reynolds number equal to 106. The finite element technique was favoured for the solution of the Navier–Stokes equations, in the formulation where the stream function and the vorticity are the field variables. The cylinder oscillation frequency ranged between 0·80 and 1·20 of the natural vortex-shedding frequency, and the oscillation amplitude extended up to 50% of the cylinder diameter. Since the resolution of the characteristics of synchronized wakes is the focus of the study, the first task is the determination of the boundary of the lock-in region. The computation revealed that, when the cylinder oscillation frequency exceeds the frequency of the natural shedding of vortices, the flow is not absolutely periodic at subsequent cycles but a quasiperiodic flow pattern occurs, which creates difficulty in the determination of the lock-in boundary. The time histories of the drag and lift forces for various oscillation parameters are presented, while the vorticity contours were favoured for the numerical flow visualization. The hydrodynamic forces, the phase angle between the lift force and the cylinder displacement, and the parameters of the wake geometry when steady state was reached, are presented in cumulative diagrams. These diagrams indicate the effect of the oscillation parameters on the hydrodynamic forces and on the wake geometry.  相似文献   

16.
Classes of vortex formation from a horizontal cylinder adjacent to an undulating free-surface wave are characterized using high-image-density particle image velocimetry. Instantaneous representations of the velocity field, streamline topology and vorticity patterns yield insight into the origin of unsteady loading of the cylinder. For sufficiently deep submergence of the cylinder, the orbital nature of the wave motion results in multiple sites of vortex development, i.e., onset of vorticity concentrations, along the surface of the cylinder, followed by distinctive types of shedding from the cylinder. All of these concentrations of vorticity then exhibit orbital motion about the cylinder. Their contributions to the instantaneous values of the force coefficients are assessed by calculating moments of vorticity. It is shown that large contributions to the moments and their rate of change with time can occur for those vorticity concentrations having relatively small amplitude orbital trajectories. In a limiting case, collision with the surface of the cylinder can occur. Such vortex–cylinder interactions exhibit abrupt changes in the streamline topology during the wave cycle, including abrupt switching of the location of saddle points in the wave. The effect of nominal depth of submergence of the cylinder is characterized in terms of the time history of patterns of vorticity generated from the cylinder and the free surface. Generally speaking, generic types of vorticity concentrations are formed from the cylinder during the cycle of the wave motion for all values of submergence. The proximity of the free surface, however, can exert a remarkable influence on the initial formation, the eventual strength, and the subsequent motion of concentrations of vorticity. For sufficiently shallow submergence, large-scale vortex formation from the upper surface of the cylinder is inhibited and, in contrast, that from the lower surface of the cylinder is intensified. Moreover, decreasing the depth of submergence retards the orbital migration of previously shed concentrations of vorticity about the cylinder.  相似文献   

17.
The near-wake of a circular cylinder having a helical wire pattern about its surface is characterized using a technique of high-image-density velocimetry. Patterns of vorticity in three orthogonal planes show substantial influence of a wire having a diameter an order of magnitude smaller than the cylinder diameter. The distinctive patterns of vorticity in these three planes are associated with lack of formation of large-scale Kármán-like clusters of vorticity (ωz) in the near-wake region of the cylinder. The instantaneous structure of the separating spanwise vorticity (ωz) layers on either side of the cylinder involve small-scale concentrations of vorticity analogous to the well-known Kelvin–Helmholtz vortices from a smooth cylinder. Moreover, a dual vorticity layer, i.e., two adjacent layers of like vorticity (ωz), can form from one side of the cylinder. Along the span of the cylinder, distributions of instantaneous velocity and transverse vorticity (ωy) show a spatially periodic sequence of wake-like patterns, each of which has features in common with the very near-wake of a two-dimensional bluff body, including a large velocity defect bounded by vorticity layers with embedded small-scale vorticity concentrations. In the cross-flow plane of the wake, patterns of streamwise vorticity (ωx) show small-scale, counter-rotating pairs of vorticity concentrations (ωx) emanating from the inclined helical perturbation, rather than isolated concentrations of vorticity of like sign, which would indicate single streamwise vortices. All of the aforementioned patterns of small-scale vorticity concentrations are scaled according to the local wake width/local pitch of the helical wire pattern in the respective plane of observation.  相似文献   

18.
The problem of the stability of a circular cylinder in a circulation flow is considered under the condition that the cylinder can perform both free (free cylinder) and forced oscillations (cylinder on a spring). It is shown that this simple system can be unstable in the presence of flow vorticity. Particular cases of vorticity distributions which make it possible to obtain an analytic solution are considered. The case of weak monotonically decreasing vorticity of an arbitrary form is analyzed for an arbitrary relation between the densities of the cylinder and the fluid. It turns out that the instability can develop only for a cylinder whose density is greater than that of the fluid. An approximate method of solving this problem based on consideration of the energy balance in the system is constructed. This makes it possible to obtain an expression for the growth rates and explain the physical mechanism realizing the instability, which is associated with the possibility of energy transfer from perturbations in the critical layer to the cylinder oscillations.  相似文献   

19.
This paper investigates flow past a rotating circular cylinder at 3600?Re?5000 and α?2.5. The flow parameter α is the circumferential speed at the cylinder surface normalized by the free-stream velocity of the uniform cross-flow. With particle image velocimetry (PIV), vortex shedding from the cylinder is clearly observed at α<1.9. The vortex pattern is very similar to the vortex street behind a stationary circular cylinder; but with increasing cylinder rotation speed, the wake is observed to become increasing narrower and deflected sideways. Properties of large-scale vortices developed from the shear layers and shed into the wake are investigated with the vorticity field derived from the PIV data. The vortex formation length is found to decrease with increasing α. This leads to a slow increase in vortex shedding frequency with α. At α=0.65, vortex shedding is found to synchronize with cylinder rotation, with one vortex being shed every rotation cycle of the cylinder. Vortex dynamics are studied at this value of α with the phase-locked eduction technique. It is found that although the shear layers at two different sides of the cylinder possess unequal vorticity levels, alternating vortices subsequently shed from the cylinder to join the two trains of vortices in the vortex street pattern exhibit very little difference in vortex strength.  相似文献   

20.
The near-wake structure of a uniform flow past a circular cylinder undergoing a constant-amplitude transverse forced oscillation is studied numerically using a 2-D large eddy simulation (LES) calculation with a Reynolds number range from 500 to 8000. Two effects are considered: First, a comparison is made between the wake structures of periodic and nonperiodic forced oscillations of the cylinder. This was done to emphasize the importance of wake-structure differences of a periodic forced oscillation and a self-excited oscillation of a circular cylinder with the latter being characterized as a nonperiodic forced oscillation. The nonperiodic constant-amplitude forced oscillations were obtained by modulating the frequency of the periodically oscillating cylinder. The differences in the vortex-shedding behavior were made evident by analyzing the vorticity field in the entire wake domain. Second, the effect of changes in the moderate values of the Reynolds number for constant and variable frequency oscillation was investigated. Significant effects on the vortex-shedding patterns in the near wake were observed for both aspects of this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号