首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermodynamically constrained averaging theory (TCAT) is an evolving approach for formulating macroscale models that are consistent with both microscale physics and thermodynamics. This consistency requires some mathematical complexity, which can be an impediment to understanding and efficient application of this model-building approach for the non-specialist. To aid understanding of the TCAT approach, a simplified model formulation approach is developed and used to show a more compact, but less general, formulation compared to the standard TCAT approach. This new simplified model formulation approach is applied to the case of binary species diffusion in a single-fluid-phase porous medium system, clearly showing a TCAT approach that is applicable to many other systems as well. Recent extensions to the TCAT approach that enable a priori parameter estimation, and approaches to leverage available TCAT modeling building results are also discussed.  相似文献   

2.
Most models for multiphase flows in a porous medium are based on a straightforward extension of Darcy’s law, in which each fluid phase is driven by its own pressure gradient. The pressure difference between the phases is thought to be an effect of surface tension and is called capillary pressure. Independent of Darcy’s law, for liquid imbibition processes in a porous material, diffusion models are sometime used. In this paper, an ensemble phase averaging technique for continuous multiphase flows is applied to derive averaged equations and to examine the validity of the commonly used models. Closure for the averaged equations is quite complicated for general multiphase flows in a porous material. For flows with a small ratio of the characteristic length of the phase interfaces to the macroscopic length, the closure relations can be simplified significantly by an approximation with a second order error in this length ratio. This approximation reveals the information of the length scale separation obscured during an averaging process and leads to an equation system similar to Darcy’s law, but with additional terms. Based on interactions on phase interfaces, relations among closure quantities are studied.  相似文献   

3.
Ahmadi  A.  Aigueperse  A.  Quintard  M. 《Transport in Porous Media》2001,43(2):309-353
Based on the volume averaging method, a macroscopic model is developed for the upscaling of NAPL transport in a porous medium idealised by a network model. Under the assumption of local mass non-equilibrium, a macroscopic equation involving a dispersion tensor, additional convective terms and a linear form for the interfacial mass flux is obtained. The resolution of the two local closure problems obtained allow the determination of the local properties without adjustable parmeters. These problems are solved in a semi-analytical, semi-numerical manner on the network. The originality of this work is the association of the upscaling by volume averaging method with the network approach. The local properties, including the dispersion tensor and the mass exchange coefficient, can therefore be calculated over a large number of pore-bodies and pore-throats in a computationaly tractable manner, thus leading to more significant results. Results are presented for 3D, spatially periodic models of porous media.  相似文献   

4.
The analysis of two-phase flow in porous media begins with the Stokes equations and an appropriate set of boundary conditions. Local volume averaging can then be used to produce the well known extension of Darcy's law for two-phase flow. In addition, a method of closure exists that can be used to predict the individual permeability tensors for each phase. For a heterogeneous porous medium, the local volume average closure problem becomes exceedingly complex and an alternate theoretical resolution of the problem is necessary. This is provided by the method of large-scale averaging which is used to average the Darcy-scale equations over a region that is large compared to the length scale of the heterogeneities. In this paper we present the derivation of the large-scale averaged continuity and momentum equations, and we develop a method of closure that can be used to predict the large-scale permeability tensors and the large-scale capillary pressure. The closure problem is limited by the principle of local mechanical equilibrium. This means that the local fluid distribution is determined by capillary pressure-saturation relations and is not constrained by the solution of an evolutionary transport equation. Special attention is given to the fact that both fluids can be trapped in regions where the saturation is equal to the irreducible saturation, in addition to being trapped in regions where the saturation is greater than the irreducible saturation. Theoretical results are given for stratified porous media and a two-dimensional model for a heterogeneous porous medium.  相似文献   

5.
We propose a new theory describing how the macroscopic Donnan equilibrium potential can be derived from the microscale by a scale transition analysis. Knowledge of the location and magnitude of the charge density, together with the morphology of the pore space allows one to calculate the Donnan potential, characterizing ion exclusion in charged porous materials. Use of the electrochemical potential together with Gauss’ electrostatic theorem allows the computation of the ion and voltage distribution at the microscale. On the other hand, commonly used macroscopic counterparts of these equations allow the estimation of the Donnan potential and ion concentration on the macroscale. However, the classical macroscopic equations describing phase equilibrium do not account for the non-homogeneous distribution of ions and voltage at the microscale, leading to inconsistencies in determining the Donnan potential (at the macroscale). A new generalized macroscopic equilibrium equation is derived by means of volume averaging of the microscale electrochemical potential. These equations show that the macroscopic voltage is linked to so-called “effective ion concentrations”, which for ideal solutions are related to logarithmic volume averages of the ion concentration at the microscale. The effective ion concentrations must be linked to an effective fixed charge concentration by means of a generalized Poisson equation in order to deliver the correct Donnan potential. The theory is verified analytically and numerically for the case of two monovalent electrolytic solutions separated by a charged porous material. For the numerical analysis a hierarchical modeling approach is employed using a one-dimensional (1D)macroscale model and a two-dimensional (2D)microscale model. The influence of various parameters such as surface charge density and ion concentration on the Donnan potential are investigated.  相似文献   

6.
The porosity and permeability of the caved zone (gob) in a longwall operation impact many ventilation and methane control related issues, such as air leakage into the gob, the onset of spontaneous combustion, methane and air flow patterns in the gob, and the interaction of gob gas ventholes with the mining environment. Despite its importance, the gob is typically inaccessible for performing direct measurements of porosity and permeability. Thus, there has always been debate on the likely values of porosity and permeability of the caved zone and how these values can be predicted. This study demonstrates a predictive approach that combines fractal scaling in porous medium with principles of fluid flow. The approach allows the calculation of porosity and permeability from the size distribution of broken rock material in the gob, which can be determined from image analyzes of gob material using the theories on a completely fragmented porous medium. The virtual fragmented fractal porous medium so generated is exposed to various uniaxial stresses to simulate gob compaction and porosity and permeability changes during this process. The results suggest that the gob porosity and permeability values can be predicted by this approach and the presented models are capable to produce values close to values documented by other researchers.  相似文献   

7.
The Forchheimer equation: A theoretical development   总被引:2,自引:0,他引:2  
In this paper we illustrate how the method of volume averaging can be used to derive Darcy's law with the Forchheimer correction for homogeneous porous media. Beginning with the Navier-Stokes equations, we find the volume averaged momentum equation to be given by $$\langle v_\beta \rangle = - \frac{K}{{\mu _\beta }} \cdot (\nabla \langle p_\beta \rangle ^\beta - \rho _\beta g) - F\cdot \langle v_\beta \rangle .$$ The Darcy's law permeability tensor, K, and the Forchheimer correction tensor, F, are determined by closure problems that must be solved using a spatially periodic model of a porous medium. When the Reynolds number is small compared to one, the closure problem can be used to prove that F is a linear function of the velocity, and order of magnitude analysis suggests that this linear dependence may persist for a wide range of Reynolds numbers.  相似文献   

8.
We consider unsteady flow in porous media and focus on the behavior of the coefficients in the unsteady form of Darcy’s equation. It can be obtained by consistent volume-averaging of the Navier–Stokes equations together with a closure for the interaction term. Two different closures can be found in the literature, a steady-state closure and a virtual mass approach taking unsteady effects into account. We contrast these approaches with an unsteady form of Darcy’s equation derived by volume-averaging the equation for the kinetic energy. A series of direct numerical simulations of transient flow in the pore space of porous media with various complexities are used to assess the applicability of the unsteady form of Darcy’s equation with constant coefficients. The results imply that velocity profile shapes change during flow acceleration. Nevertheless, we demonstrate that the new kinetic energy approach shows perfect agreement for transient flow in porous media. The time scale predicted by this approach represents the ratio between the integrated kinetic energy in the pore space and that of the intrinsic velocity. It can be significantly larger than that obtained by volume-averaging the Navier–Stokes equation using the steady-state closure for the flow resistance term.  相似文献   

9.
This study deals with macroscopic modeling of heat transfer in porous media subjected to high temperature. The derivation of the macroscopic model, based on thermal non-equilibrium, includes coupling of radiation with the other heat transfer modes. In order to account for non-Beerian homogenized phases, the radiation model is based on the generalized radiation transfer equation and, under some conditions, on the radiative Fourier law. The originality of the present upscaling procedure lies in the application of the volume averaging method to local energy conservation equations in which radiation transfer is included. This coupled homogenization mainly raises three challenges. First, the physical natures of the coupled heat transfer modes are different. We have to deal with the coexistence of both the material system (where heat conduction and/or convection take place) and the non-material radiation field composed of photons. This radiation field is homogenized using a statistical approach leading to the definition of radiation properties characterized by statistical functions continuously defined in the whole volume of the porous medium. The second difficulty concerns the different scales involved in the upscaling procedure. Scale separation, required by the volume averaging method, must be compatible with the characteristic length scale of the statistical approach. The third challenge lies in radiation emission modeling, which depends on the temperature of the material system. For a semi-transparent phase, this temperature is obtained by averaging the local-scale temperature using a radiation intrinsic average while a radiation interface average is used for an opaque phase. This coupled upscaling procedure is applied to different combinations of opaque, transparent, or semi-transparent phases. The resulting macroscopic models involve several effective transport properties which are obtained by solving closure problems derived from the local-scale physics.  相似文献   

10.
In this paper we analyze the flow of a Maxwell fluid in a rigid porous medium using the method of volume averaging. We first present the local volume averaged momentum equation which contains Darcy-scale elastic effects and undetermined integrals of the spatial deviations of the pressure and velocity. A closure problem is developed in order to determine the spatial deviations and thus obtain a closed form of the momentum equation that contains a time-dependent permeability tensor. To gain some insight into the effects of elasticity on the dynamics of flow in porous media, the entire problem is transformed to the frequency domain through a temporal Fourier transform. This leads to a dynamic generalization of Darcy's law. Analytical results are provided for the case in which the porous medium is modeled as a bundle of capillary tubes, and a scheme is presented to solve the transformed closure problem for a general microstructure.  相似文献   

11.
The thermodynamical relations for a two-phase, N-constituent, swelling porous medium are derived using a hybridization of averaging and the mixture-theoretic approach of Bowen. Examples of such media include 2-1 lattice clays and lyophilic polymers. A novel, scalar definition for the macroscale chemical potential for porous media is introduced, and it is shown how the properties of this chemical potential can be derived by slightly expanding the usual Coleman and Noll approach for exploiting the entropy inequality to obtain near-equilibrium results. The relationship between this novel scalar chemical potential and the tensorial chemical potential of Bowen is discussed. The tensorial chemical potential may be discontinuous between the solid and fluid phases at equilibrium; a result in clear contrast to Gibbsian theories. It is shown that the macroscopic scalar chemical potential is completely analogous with the Gibbsian chemical potential. The relation between the two potentials is illustrated in three examples.  相似文献   

12.
The assumption of constant local coefficients is one of the first restrictions in most of the smoothing theories for transport in porous media. In this paper we present a formal analysis of the effects produced by nonconstant local transport coefficients on the nonlinear behavior of the effective transport properties. In particular, we use the volume averaging method to study heat transport in a two-component system considering the local thermal conductivities as analytical functions of the temperature. Within this approach we obtain a general expression for the effective nonlinear thermal conductivity dependence on the averaged temperature gradient. The important result is that the effective conductivity is obtained by a linearly bounded problem (the closure problem), just as if the conductivities were constants, by replacing the constant conductivities by the actual temperature dependent ones. As an example, we model the porous medium as cylindrical inclusions in a periodic array and solve the closure problem for the case of the one-equation model. We analyze the values of the second derivative of the thermal conductivity with respect to the temperature to establish the range where the nonlinear corrections must be considered to correctly describe the effective transport.  相似文献   

13.
14.
Wave propagation in fractured porous media   总被引:3,自引:0,他引:3  
A theory of wave propagation in fractured porous media is presented based on the double-porosity concept. The macroscopic constitutive relations and mass and momentum balance equations are obtained by volume averaging the microscale balance and constitutive equations and assuming small deformations. In microscale, the grains are assumed to be linearly elastic and the fluids are Newtonian. Momentum transfer terms are expressed in terms of intrinsic and relative permeabilities assuming the validity of Darcy's law in fractured porous media. The macroscopic constitutive relations of elastic porous media saturated by one or two fluids and saturated fractured porous media can be obtained from the constitutive relations developed in the paper. In the simplest case, the final set of governing equations reduce to Biot's equations containing the same parameters as of Biot and Willis.Now at Izmir Institute of Technology, Anafartalar Cad. 904, Basmane 35230, Izmir, Turkey.  相似文献   

15.
This paper presents an overview of the state-of-the-art of direct numerical simulation (DNS) and closure models of particle-laden turbulent flows. The paper also shows how the results of direct simulation can be used to improve current closure models of these flows. Particle dispersion in a decaying grid-turbulence is studied using DNS, and the results are compared with the measurements of Snyder and Lumley (1971).  相似文献   

16.
In this second paper, the averaging rules presented in Part 1 are employed in order to develop a general macroscopic balance equation and particular equations for mass, mass of a component, momentum and energy, all of a phase in a porous medium domain. These balance equations involve averaged fluxes. Then macroscopic equations are developed for advective, dispersive and diffusive fluxes, all in terms of averaged state variables of the system. These are combined with the macroscopic balance equations to yield field equations that serve as the core of the mathematical models that describe the transport of extensive quantities in a porous medium domain. It is shown that the methodology of averaging leads to a better understanding of the effective stress concept employed in dealing with transport phenomena in deformable porous media.  相似文献   

17.
To predict turbulence in porous media, a new approach is discussed. By double (both volume and Reynolds) averaging Navier–Stokes equations, there appear three unknown covariant terms in the momentum equation. They are namely the dispersive covariance, the macro-scale and the micro-scale Reynolds stresses, in the present study. For the macro-scale Reynolds stress, the TCL (two-component-limit) second moment closure is applied whereas the eddy viscosity models are applied to the other covariant terms: the Smagorinsky model and the one-equation eddy viscosity model, respectively for the dispersive covariance and the micro-scale Reynolds stress. The presently proposed model is evaluated in square rib array flows and porous wall channel flows with reasonable accuracy though further development is required.  相似文献   

18.
The macroscopic governing equations of a compressible multicomponents flow with non-uniform viscosity and with mass withdrawal (due to heterogeneous reactions) in a porous medium are developed. The method of volume averaging was used to transform local (or microscopic) governing equations into averaged (or macroscopic) governing equations. The impacts of compressibility, non-uniform viscosity, and mass withdrawal on the form of the averaged equations and on the value of the macroscopic transport coefficients were investigated. The results showed that the averaged mass conservation equation is significantly affected by mass withdrawal when a specific criterion on the size of the domain is respected. The results also showed that the form of the averaged momentum equations is not affected by mass withdrawal, by compressibility effects or by non-uniform viscosity, provided that the Reynolds number at the pore level is small. Nonetheless, the velocity field is affected by the heterogeneous reaction via the averaged mass conservation equation, and also by viscosity variations due to the presence of the volume-averaged viscosity (which value changes with position) in the averaged momentum equations. A new closure variable definition was proposed to formulate the closure problem, which avoided the need to solve an integro-differential equation in the closure problem. This formulation was used to show that the permeability tensor only depends on the geometry of the porous medium. In other words, that tensor is independent on whether the fluid is compressible/incompressible, has uniform/non-uniform viscosities, and whether mass withdrawal due to heterogeneous reactions is present/absent.  相似文献   

19.
In this paper, the method of large-scale averaging is used to develop two different one-equation models describing dispersion in heterogeneous porous media. The first model represents the case of large-scale mass equilibrium, while the second represents the asymptotic behavior of a two-equation model obtained by large-scale averaging. It is shown that a one-equation, non-equilibrium model can be developed even when the intrinsic large-scale averaged concentrations for each region are not equal. The solution of this non-equilibrium model is equivalent to the asymptotic behavior of the two-equation model.  相似文献   

20.
A study is made of the problem of averaging the simplest one-dimensional evolution equations of stochastic transport in a porous medium. A number of exact functional equations corresponding to distributions of the random parameters of a special form is obtained. In some cases, the functional equations can be localized and reduced to differential equations of fairly high order. The first part of the paper (Secs. 1–6) considers the process of transport of a neutral admixture in porous media. The functional approach and technique for decoupling the correlations explained by Klyatskin [4] is used. The second part of the paper studies the process of transport in porous media of two immiscible incompressible fluids in the framework of the Buckley—Leverett model. A linear equation is obtained for the joint probability density of the solution of the stochastic quasilinear transport equation and its derivative. An infinite chain of equations for the moments of the solution is obtained. A scheme of approximate closure is proposed, and the solution of the approximate equations for the mean concentration is compared with the exactly averaged concentration.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 127–136, September–October, 1985.We are grateful to A. I. Shnirel'man for pointing out the possibility of obtaining an averaged equation in the case of a velocity distribution in accordance with a Cauchy law.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号