首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
We consider unsteady flow in porous media and focus on the behavior of the coefficients in the unsteady form of Darcy’s equation. It can be obtained by consistent volume-averaging of the Navier–Stokes equations together with a closure for the interaction term. Two different closures can be found in the literature, a steady-state closure and a virtual mass approach taking unsteady effects into account. We contrast these approaches with an unsteady form of Darcy’s equation derived by volume-averaging the equation for the kinetic energy. A series of direct numerical simulations of transient flow in the pore space of porous media with various complexities are used to assess the applicability of the unsteady form of Darcy’s equation with constant coefficients. The results imply that velocity profile shapes change during flow acceleration. Nevertheless, we demonstrate that the new kinetic energy approach shows perfect agreement for transient flow in porous media. The time scale predicted by this approach represents the ratio between the integrated kinetic energy in the pore space and that of the intrinsic velocity. It can be significantly larger than that obtained by volume-averaging the Navier–Stokes equation using the steady-state closure for the flow resistance term.  相似文献   

3.
4.
The study considers the forced boundary-layer flow overlying the Darcy–Brinkman porous medium and gives a quantitative analysis of the nonlinear inertial terms in the Brinkman filtration equation. The inertial terms are shown to be larger than the Darcy’s drag near the porous medium interface. The applicability range of boundary-layer approach is determined. It is suitable in high-permeable media with moderate velocities of an external flow. If it is slow enough, the inertial terms can be omitted in spite of interface effect. On the other hand, fast external flow produces the filtration with large pore-scale Reynolds number; therefore, the Forchheimer’s drag should be taken into account. It is shown the Brinkman term as well as inertial terms have a significant role in boundary-layer formation within the porous medium.  相似文献   

5.
A thin film of a power–law fluid flowing down a porous inclined plane is considered. It is assumed that the flow through the porous medium is governed by the modified Darcy’s law together with Beavers–Joseph boundary condition for a general power–law fluid. Under the assumption of small permeability relative to the thickness of the overlying fluid layer, the flow is decoupled from the filtration flow through the porous medium and a slip condition at the bottom is used to incorporate the effects of the permeability of the porous substrate. Applying the long-wave theory, a nonlinear evolution equation for the thickness of the film is obtained. A linear stability analysis of the base flow is performed and the critical condition for the onset of instability is obtained. The results show that the substrate porosity in general destabilizes the film flow system and the shear-thinning rheology enhances this destabilizing effect. A weakly nonlinear stability analysis reveals the existence of supercritical stable and subcritical unstable regions in the wave number versus Reynolds number parameter space. The numerical solution of the nonlinear evolution equation in a periodic domain shows that the fully developed nonlinear solutions are either time-dependent modes that oscillate slightly in the amplitude or time independent stable two-dimensional nonlinear waves with large amplitude referred to as ‘permanent waves’. The results show that the shape and the amplitude of the nonlinear waves are strongly influenced by the permeability of the porous medium and the shear-thinning rheology.  相似文献   

6.
The lattice Boltzmann method is developed to simulate the pressure-driven flow and electroosmotic flow of non-Newtonian fluids in porous media based on the representative elementary volume scale. The flow through porous media was simulated by including the porosity into the equilibrium distribution function and adding a non-Newtonian force term to the evolution equation. The non-Newtonian behavior is considered based on the Herschel–Bulkley model. The velocity results for pressure-driven non-Newtonian flow agree well with the analytical solutions. For the electroosmotic flow, the influences of porosity, solid particle diameter, power law exponent, yield stress and electric parameters are investigated. The results demonstrate that the present lattice Boltzmann model is capable of modeling non-Newtonian flow through porous media.  相似文献   

7.
This work reports on fluid flow in a fluid-saturated porous medium, accounting for the boundary and inertial effects in the momentum equation. The flow is simulated by Brinkman-Forchheimer-extended Darcy formulation (DFB), using MAC (Marker And Cell) and Chorin pressure iteration method. The method is validated by comparison with analytic results. The effect of Reynolds number, Darcy number, porosity and viscosity ratio on velocity is investigated. As a result, it is found that Darcy number has a decisive influence on pressure as well as velocity, and the effect of viscosity ratio on velocity is very strong given the Darcy number. Additional key findings include unreasonable choice of effective viscosity can involve loss of important physical information.  相似文献   

8.
Much of the work on flow through porous media, especially with regard to studies on the flow of oil, are based on ‘Darcy's law’ or modifications to it, such as Darcy–Forchheimer or Brinkman models. While many theoretical and numerical studies concerning flow through porous media have taken into account the inhomogeneity and anisotropy of the porous solid, they have not taken into account the fact that the viscosity of the fluid and drag coefficient could depend on the pressure in applications, such as enhanced oil recovery (EOR). Experiments clearly indicate that the viscosity varies exponentially with respect to the pressure and the viscosity can change, in some applications, by several orders of magnitude. The fact that the viscosity depends on pressure immediately implies that the ‘drag coefficient’ would also depend on the pressure. In this paper we consider modifications to Darcy's equation wherein the drag coefficient is a function of pressure, which is a realistic model for technological applications, such as EOR and geological carbon sequestration. We first outline the approximations behind Darcy's equation and the modifications that we propose to Darcy's equation, and derive the governing equations through a systematic approach using mixture theory. We then propose a stabilized mixed finite element formulation for the modified Darcy's equation. To solve the resulting nonlinear equations we present a solution procedure based on the consistent Newton–Raphson method. We solve representative test problems to illustrate the performance of the proposed stabilized formulation. One of the objectives of this paper is to show that the dependence of viscosity on the pressure can have a significant effect both on the qualitative and quantitative nature of the solution. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
The composite effects of viscosity, porosity, buoyancy parameter, thermal conductivity ratio and non-Darcy effects of Brinkman friction and Forscheimmer quadratic drag on the mixed convection boundary layer flow past a semi-infinite plate in a fully-saturated porous regime are theoretically and numerically investigated using Keller’s implicit finite-difference technique and a double-shooting Runge-Kutta method. The Brinkman Forcheimer-extended Darcy model is implemented in the hydrodynamic boundary layer equation. The effects of the various non-dimensional thermofluid parameters, viz Grashof number, Darcy number, and Forchheimer number, and also porosity, thermal conductivity and viscosity parameters on the velocity and temperature fields are discussed. Computations for both numerical schemes are made where possible and found to be in excellent agreement.  相似文献   

10.
Numerical modeling of flow through vuggy porous media, mainly vuggy carbonates, is a challenging endeavor. Firstly, because the presence of vugs can significantly alter the effective porosity and permeability of the medium. Secondly, because of the co‐existence of porous and free flow regions within the medium and the uncertainties in defining the exact boundary between them. Traditionally, such heterogeneous systems are modeled by the coupled Darcy–Stokes equations. However, numerical modeling of flow through vuggy porous media using coupled Darcy–Stokes equations poses several numerical challenges particularly with respect to specification of correct interface condition between the porous and free‐flow regions. Hence, an alternative method, a more unified approach for modeling flows through vuggy porous media, the Stokes–Brinkman model, is proposed here. It is a single equation model with variable coefficients, which can be used for both porous and free‐flow regions. This also makes the requirement for interface condition redundant. Thus, there is an obvious benefit of using the Stokes–Brinkman equation, which can be reduced to Stokes or Darcy equation by the appropriate choice of parameters. At the same time, the Stokes–Brinkman equation provides a smooth transition between porous and free‐flow region, thereby taking care of the associated uncertainties. A numerical treatment for upscaling Stokes–Brinkman model is presented as an approach to use Stokes–Brinkman model for multi‐phase flow. Numerical upscaling methodology is validated by analyzing the error norm for numerical pressure convergence. Stokes–Brinkman single equation model is tested on a series of realistic data sets, and the results are compared with traditional coupled Darcy–Stokes model. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
During infiltration of water in soil, menisci form at the interface of water, grains, and air in the pores, inducing suction due to surface tension. Due to the random distribution of interconnected pores of different sizes, characteristic of porous media, differences in suction and friction inside pores give a diffusing infiltration front. The process of infiltration is often simulated by solving Richards’ equation in which the water flux is calculated with Darcy’s law. Underlying Darcy’s law is the assumption that the gradients in flow potential and the flow resistance due to viscous forces are independent from each other. This paper shows that these parameters are dependent and negatively correlated. A new method for calculating flows in unsaturated porous media has been developed to evaluate the impact of the covariance on infiltration predictions. The results show that the impact is significant and leads to a reduction in infiltration rate and mean friction experienced during infiltration. The method thereby provides a physical explanation for the subdiffusion observed during water infiltration in soil and is consequently expected to provide more insights into the processes of infiltration.  相似文献   

12.
Non-Darcy Flow of Water Through a Packed Column Test   总被引:2,自引:0,他引:2  
As the flow velocity and Reynolds number increase in rockfilled porous media, the flow deviates from Darcy conditions and enters into a new phase known as non-Darcy conditions. Due to a linear relationship between hydraulic gradient and the flow velocity in Darcy formula, the flow can be analyzed with no difficulty. However, as the velocity increases the Darcy law is violated, the flow becomes turbulent, making the analysis more challenging. In this paper a laboratory packed column was built to study high-velocity flow through granular materials and new experimental data have been obtained. The laboratory experiments include application of for six different sizes of rounded aggregates and using different hydraulic gradients to assess the flow behavior. Using new experimental data, the validity of four widely-used head-loss equations were evaluated. The results indicated that the Sidiropoulou et al. (Hydrol Process 21:534–554, 2007) and Ergun’s head-loss equations yield satisfactory results comparing to other available relationships.  相似文献   

13.
C. Di Nucci 《Meccanica》2014,49(12):2829-2838
This paper deals with the theoretical derivation of the conservation equations for single phase flow in a porous medium. The derivation is obtained within the framework of the continuum mechanics and classical thermodynamics. The adopted procedure provides the conservation equations of mass, momentum, mechanical energy, total energy, internal energy, entropy, temperature, enthalpy, Gibbs free energy and Helmholtz free energy. The obtained results highlight the connection between the basic equations of fluid mechanics and of fluid flow in porous media, as well as the restrictions and the limitations of Darcy’s law and Richards’ equation.  相似文献   

14.
Free flow channel confined by porous walls is a feature of many of the natural and industrial settings. Viscous flows adjacent to saturated porous medium occur in cross-flow and dead-end filtrations employed primarily in pharmaceutical and chemical industries for solid–liquid or gas–solid separations. Various mathematical models have been put forward to describe the conjugate flow dynamics based on theoretical grounds and experimental evidence. Despite this fact, there still exists a wide scope for extensive research in numerical solutions of these coupled models when applied to problems with industrial relevance. The present work aims towards the numerical analysis of coupled free/porous flow dynamics in the context of industrial filtration systems. The free flow dynamics has been expressed by the Stokes equations for the creeping, laminar flow regime whereas the flow behaviour in very low permeability porous media has been represented by the conventional Darcy equation. The combined free/porous fluid dynamical behaviour has been simulated using a mixed finite element formulation based on the standard Galerkin technique. A nodal replacement technique has been developed for the direct linking of Stokes and Darcy flow regimes which alleviates specification of any additional constraint at the free/porous interface. The simulated flow and pressure fields have been found for flow domains with different geometries which represent prototypes of actual industrial filtration equipment. Results have been obtained for varying values of permeability of the porous medium for generalised Newtonian fluids obeying the power law model. A series of numerical experiments has been performed in order to validate the coupled flow model. The developed model has been examined for its flexibility in dealing with complex geometrical domains and found to be generic in delivering convergent, stable and theoretically consistent results. The validity and accuracy of the simulated results has been affirmed by comparing with available experimental data.  相似文献   

15.
Manufacturing a hybrid bone substitute requires a dynamic culture of the cells preliminarily seeded in a scaffold through a flow of physiological fluid. The velocity, pressure, and the distribution of fluid flow in this kind of macroporous medium are the important keys. Because of the difficulties in determining these parameters by experiment, a numerical approach has been chosen. One of the primary step of this study consists in the determination of permeability K. In this article, two types of structure of macroporous bioceramics are concerned. One is the interconnected pore spheres arranged either simple cubic, body-centered cubic or face-centered cubic systems. The other is the interconnected pore spheres randomly arranged. Based on Darcy??s law, the permeability K was calculated for many cases (type, porosity) by simulating the fluid flow through a small representative volume. These results are compared with some previous models such as Ergun, Carman?CKozeny, Rumpf?CGupte, and Du Plessis. The limits of Darcy??s law and the above-mentioned models have been determined using numerical simulation. The result showed that the porous media with spherical interconnected pores of BCC systems can be used to replace a complex random system in a range of porosity from 0.71 to 0.76 (i.e., porosity of our scaffolds). This assumption is validated for a pressure gradient lower the 1,000?Pa m?C1 and a simple polynomial relation linking permeability and porosity (0.71?C0.76) has been established.  相似文献   

16.
An approach to describe the turbulent flow through a complex geometry (e.g., urban area) by means of an analogy to flows through porous media is presented. Therefore, a modification of the original Darcy’s law is proposed, and its application is tested in a prototype problem with an idealized complex geometry using large eddy simulations. The numerical results indicate the validity of the modified Darcy’s law for the chosen setup.  相似文献   

17.
The problem of convection, diffusion and reaction inside a spherical porous pellet is investigated analytically. Unsteady Stokes equation is used for the flow outside the porous pellet and Darcy’s law is used inside the pellet. A solenoidal decomposition method is employed for the hydrodynamic problem. Following the above findings, the convection–diffusion–reaction problem is formulated and solved analytically for a first order reaction. The behavior of the nutrient transport is discussed with respect to various parameters like Darcy number, Peclet number, frequency and Thiele modulus. Also the effectiveness factor corresponding to the first order reaction is computed.  相似文献   

18.
Transport in Porous Media - The conventional and a generalized form of Darcy’s law for the absolute permeability of porous media at low flow rates has been derived using the Langevin...  相似文献   

19.
A two-dimensional analysis of the onset of thermal convective instability in a horizontal porous layer with open upper boundary is carried out. The saturating fluid is non-Newtonian of power-law behaviour, and its flow is represented through a suitable extension of Darcy’s law. A model of temperature-dependent viscosity is employed where the consistency index is considered as variable, while the power-law index is assumed to be constant. Numerical data for the neutral stability and for the critical values of a modified Darcy–Rayleigh number have been obtained. The feasibility of an experimental validation of the theoretical results predicted by the stability analysis is discussed in detail. An experimental set-up based on a Hele-Shaw cell is described, and preliminary results relative to the onset of convective cells are described. Observed hysteretic effects and deviations from the rheological model are identified as potential sources of uncertainty.  相似文献   

20.
This article presents injection experiments and modeling of cement based grout in sand. In particular, it focuses on the role of filtration during the sand impregnation by the grout. One-dimensional injection tests in sand columns are performed. In these, the mass intake of the sample and the injection pressure are measured to quantify the effects of filtration during grouting. The cement-to-water ratio of the grout and the initial density of the soil are also studied. The modeling of these tests is achieved by incorporating the filtration and the damage coefficients in the classical transport in porous media equations. A method is proposed to determine these coefficients. The method simultaneously relies on both analytical analysis and experimental measurements. Density and viscosity effects are also considered in the model equations which are solved using the finite element method. The simulation of an injection test proves that the model is suitable to recover the injection pressure obtained experimentally. Finally, both experimental and numerical results reveal the importance of including filtration when analyzing one-dimensional injections of cement based grouts in sand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号