首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
转台角位置基准误差对激光捷联惯导标定的影响分析   总被引:1,自引:1,他引:0  
研究了利用三轴转台标定时,转台角位置基准误差对激光捷联惯导系统标定精度的影响.从理论上推导了转台角位置基准误差与激光捷联惯导系统标定结果之间的数学关系,得到以下结论:北向以及水平基准误差对陀螺仪零偏与标度因数的标定影响较小,对陀螺安装误差系数的标定影响较大,当误差角为1°时,标定误差将达到0.33×10-3 (′/s)/P;北向基准误差对加速度计标定结果的影响很小,而水平基准误差对加速度计的标定影响较大.仿真与标定实验均验证了理论分析的正确性,因此标定实验前转台的调平、对北工作是必不可少的.  相似文献   

2.
一种低精度惯性测量单元的精确标定技术   总被引:4,自引:3,他引:1  
低精度惯性测量单元的温度特性和非线性严重,为补偿光纤陀螺的温度特性和非线性,通过高低温、多速率的标定实验研究了光纤陀螺输出电压与温度、转速的关系,采用零偏和标度因数统一标定的思想提出了光纤陀螺分段模型;为补偿MEMS加速度计的温度特^陛,通过高低温位置实验研究了加速度计输出电压与温度、输入加速度的关系,提出了加速度计分段模型。采用逐步线性回归对以上模型进行了简化。实时补偿效果表明,当温度从-30℃到60℃变化时,在±60(°)/s转速内角速度误差基本小于0.02(°)/s,加速度误差小于0.005g.  相似文献   

3.
设计了捷联惯组方位基准镜安装误差的标定方法,实现了高精度的方位引出。首先,把捷联惯组固定在标准六面体内,在高精度转台上进行捷联惯组的参数标定,使捷联惯组导航坐标系与标准六面体一致;然后,在有L形靠面的水平大理石平板上,借助实验室内高精度的北向方位基准,使用经纬仪对平面镜与标准六面体之间的安装误差进行标定。通过坐标系间姿态矩阵转换,修正安装误差后,平面镜成为方位基准镜,从而实现捷联惯组的方位角引出,其均方误差不大于3″。  相似文献   

4.
激光陀螺捷联惯导系统尺寸效应参数标定与优化补偿   总被引:2,自引:0,他引:2  
提出一种捷联惯导系统尺寸效应标定补偿方法,先标定出捷联惯导系统中每个加速度计相对于三轴转台回转中心的杆臂参数,再基于尺寸效应误差最小原则,对载体坐标系原点位置进行优化,得出相应的尺寸效应参数。对于零偏稳定性优于2×10^-5g的加速度计,杆臂参数与尺寸效应参数标定重复性优于0.2mm。将载体坐标系原点置于三轴转台回转中心,以重力加速度g为基准验证标定补偿效果,转台匀速转动情况下,补偿后10min平均偏差小于2×10^-6g。根据激光陀螺角增量采样值求出角速度和角加速度,对惯导实验中的尺寸效应进行补偿,在转台角运动条件下纯惯性导航1h定位误差由尺寸效应补偿前的1600m减小到补偿后的300m以内。  相似文献   

5.
硅微陀螺正交误差及其对信号检测的影响   总被引:1,自引:0,他引:1  
分析了硅微陀螺正交误差在运动方程中的表现,利用Simulink仿真研究了正交误差对信号检测的影响。文中先推导了不等弹性存在的情况下正交误差等效角速度的表达式,随后分析了某型硅微陀螺在角速度输入为0(°)/s和80(°)/s时敏感振动的频谱图,最后仿真分析了正交误差对模拟和数字检测电路的影响。经分析,对于模拟解调电路,正交误差会导致陀螺的零偏和温漂;对于数字解调电路,由于正交误差大大减小了敏感振动的电压幅值对角速度的标度因数,在AD量化噪声及其它电路噪声一定的情况下,会使陀螺零偏稳定性变差,从而限制了数字解调的优势。  相似文献   

6.
静电加速度计标度因数和零偏误差标定   总被引:1,自引:0,他引:1  
为了确保静电加速度计长期在轨工作,结合非线性Batch估计算法,研究了静电加速度计标度因数和零偏误差标定。首先,充分考虑静电加速度计量测过程中可能出现的各种误差源并进行分析,建立了静电加速度计在动态设计良好并进入稳态后,卫星姿态稳定度优于0.01°/s,卫星质心保持精度优于2mm的情况下的量测模型。然后,将高精度地球引力场模型和静电加速度计量测数据代入非线性Batch估计算法的的动力学方程中,将GPS量测数据代入非线性Batch估计算法的量测方程中,建立了静电加速度计标定因数和零偏误差标定模型。最后,通过数学仿真验证了该方法的可行性,其标定精度可达到0.2%,具有一定工程应用参考价值。  相似文献   

7.
激光陀螺捷联惯导系统多位置标定方法   总被引:1,自引:0,他引:1  
在建立惯性仪表简化误差模型的基础上,提出了一种多位置标定方法.该方法充分考虑标定条件、设备以及时间等因素,设计了一种多位置连续转动标定方案,充分激励惯性仪表各项误差参数,从而建立起所有误差参数与系统导航误差之间的关系,通过测量每个位置静态导航状态下的速度误差,采用最小二乘估计,全面辨识出所有21个误差参数.理论分析和实验结果表明,与传统标定方法相比,该方法对标定设备要求低,无需北向基准,实现简单方便,在较短的时间内就可以一次标定出惯性仪表所有21个误差参数,标定精度与基于精密转台的标定精度相当,具有较强的工程实用性.  相似文献   

8.
从标定算法误差和位置编排对标定精度的影响两个方面对外场激光惯组多位置标定方法的标定精度进行了分析。证明多位置标定中由粗对准姿态角代替精确姿态角所产生的误差为二阶小量,而对加表等效天向误差和陀螺等效北向误差的估计误差会直接影响标定精度。数学仿真表明对于加表零偏10-4g,加表标度因数10-4和陀螺零偏10-2 deg/h数量级的激光惯组,该多位置标定方法的估计精度高于相应误差参数本身2个数量级,说明该方法具有较高精度。在优化位置和非优化位置条件下,多位置标定方法精度的仿真结果在同一个数量级,说明该多位置标定方法对位置编排不敏感。  相似文献   

9.
使用冗余惯性器件的捷联惯组有效地提高了其可靠性,还能提高导航精度,但也同时对其标定技术提出了新的要求。提出了一种迭代式的冗余惯组分立标定方法,可消除加表不对称误差对标定造成的影响,提高标定精度。首先建立了基于方向余弦的惯性器件输入输出模型,用最优估计方法计算模型中各参数。其次,使用迭代方法消除由于加表刻度因数不对称造成的参数估计误差,且所提方法无需北向基准。试验结果证明,在整个5100 s的动态导航中使用所提方法后,全程位置精度均有所提升,并能将末端位置精度提升约400 m。  相似文献   

10.
采用冗余传感器的捷联惯性测量组合能有效提高可靠性,并为降低测量误差和提高导航性能提供必要条件,但同时对标定提出了新问题。给出了一种具有斜置陀螺和加速度计的光纤陀螺捷联惯组标定方法。首先利用陀螺(加速度计)特性:只响应角速率(加速度)在其输入轴方向的投影分量,推导了该传感器输入轴方向的方向余弦与其安装方式的对应关系,建立了组合误差模型。用最优估计理论推导模型参数解算方法,同时考虑了地球转速及重力加速度对标定过程的影响;整个试验过程不增加标定工作量,无需北向基准。试验证明,该方法是一种高精度的工程实用标定方法,由交耦系数换算后的安装误差角符合实际情况,陀螺和加速度计的斜轴综合测量误差分别不大于0.140(°)/h和6.442E-5g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号