首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
在一套流动聚焦装置上加载高压直流电场形成电流动聚焦,并开展了非牛顿流体带电射流的不稳定性特性实验研究。实验在自行设计的装置系统上完成,获得了电流动聚焦中非牛顿流体射流的流动状态,考察了不同控制参数下射流形态的变化。结果表明,由于非牛顿流体具有粘弹性,与牛顿流体相比,非牛顿流体带电射流体现了更复杂的流动特点。这些实验结果为我们理解复杂条件下非牛顿流体射流的流动机理提供了参考,也有助于深入的实验分析和理论研究奠定了基础。  相似文献   

2.
流动聚焦是一种有效的微细射流产生方法,其原理可以描述为从毛细管流出的流体由另一种高速运动的流体驱动,经小孔聚焦后形成稳定的锥–射流结构,射流因不稳定性破碎成单分散的液滴.自从1998年流动聚焦被提出以来,陆续发展了单轴流动聚焦、电流动聚焦、复合流动聚焦和微流控流动聚焦等毛细流动技术.这些技术稳定、易操作、没有苛刻的环境条件的要求,能够制备单分散性较好的微纳米量级的液滴、颗粒和胶囊,在科学研究和实际应用中具有重要价值.流动聚焦涉及了多尺度、多界面和多场耦合的复杂流体力学问题,其中稳定的锥形是形成稳定射流的先决条件,过程参数是影响射流界面扰动发展的关键因素,而射流不稳定性分析是揭示射流破碎的最主要理论工具.该文回顾了近二十年来不同结构流动聚焦的研究进展,概述这些技术涉及的过程控制、流动模式、尺度律和不稳定性分析等关键力学问题,总结射流不稳定性的研究方法和已取得的成果,最后展望流动聚焦的研究方向和应用前景.  相似文献   

3.
4.
张帅  王博  马泽遥  陈晓东 《力学学报》2023,87(6):1257-1266
流动聚焦式液滴微流控技术借助流动聚焦效应和离散相液丝界面失稳, 实现单分散微液滴的连续生成. 该技术中的多相界面流动对于构型参数有较强的依赖性, 表现出丰富的微尺度流动特征. 本研究在前期发展的基于毛细管可变几何微流控装置的基础上, 采用数值模拟方法研究关键参数对于液滴生成模态和尺寸的影响规律. 经过合理简化后, 研究建立实验装置的轴对称模型, 并结合自适应网格加密技术, 提高了数值模拟效率; 通过多个实验工况的对比, 验证了数值模拟的准确性. 研究发现: 在所选择的流体组合、几何和流量参数范围内, 液滴生成过程存在滴流、串滴、射流和不稳定4个模态; 在固定的离散相和连续相流量组合下, 上游和下游毛细管端部间距的变化会改变滴流和串滴模态下液滴的长度, 而对射流模态下液滴的大小影响很小; 在固定的几何参数下流量变化时, 液滴长度的变化在滴流和串滴模态转换时基本连续, 而在射流模态发生时产生骤降; 下游毛细管的内径对模态相图影响显著, 大内径下滴流模态占主导, 且射流模态下液丝的射流长度变化明显, 而小内径下射流模态占主导, 且在大的连续相流量下存在不稳定模态. 研究结果表明关键结构参数对于流动聚焦式微流控液滴的生成有重要影响, 合理改变这些参数可以控制液滴尺寸和改善液滴的单分散性, 可为设计和优化流动聚焦式液滴生成装置提供依据.  相似文献   

5.
几何构型对流动聚焦生成微液滴的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
刘赵淼  杨洋 《力学学报》2016,48(4):867-876
流动聚焦型微流控装置能够方便、高效地生成均一度好且大小精确可调的微液滴(气泡),故被广泛应用于颗粒材料合成、药物封装、细胞培养等诸多领域. 进一步优化通道结构有助于实现对合成微粒粒径、均一度和尺寸范围的精确调控. 本文数值研究了通道深度、缩颈段长度以及两相夹角等几何构型因素对流动聚焦生成微液滴直径及其生成周期各个阶段的影响. 控制液滴生成方式为滴流式,发现液滴直径随通道深度d 的增加近似呈线性增大,且当通道深度小于30 μm 时,随着通道深度的下降,微液滴生成周期在毛细力的强烈作用下出现骤升,通道深度超过80 μm 时,微液滴的生成周期基本接近恒定. 连续相和离散相的夹角θ接近90°时,液滴直径及其生成周期最短,夹角太大或太小均不利于生成均一度好且粒径微小可控的液滴. 调整缩颈段长度l引起液滴直径及其生成周期的变化幅度仅为其平均值的3%~5% 左右. 此外,缩颈段宽度也是影响流动聚焦生成微液滴直径及其生成周期的重要因素,在通道深度固定时,缩颈段越宽,微液滴直径及其生成周期越大.  相似文献   

6.
甘云华  江政纬  李海鸽 《力学学报》2017,48(6):1272-1279
研究液滴在静电喷雾下的速度特性是理解喷雾形态的形成及演化的关键.结合锥射流模式下乙醇静电喷雾实验数据,建立了静电喷雾二维轴对称模型.基于离散相液滴运动方程、连续相空气运动方程、电场方程以及用户自定义函数,进行了数值求解,获得了锥射流模式下的乙醇静电喷雾形态、空间电场分布以及液滴速度场分布.考虑了不同空气入口流速的影响,得到了乙醇/空气同轴射流静电喷雾形态的变化规律.结果表明,喷雾外围液滴与空气流场有较强的相互作用,导致喷雾中轴线附近的液滴速度分布变化较小,而在喷雾外围处的液滴速度分布沿径向剧烈变化;随着空气入口速度的增大,乙醇/空气同轴射流静电喷雾形态先趋于发散,当空气入口速度大于喷雾外围液滴轴向速度时,喷雾形态则趋于聚拢.因此,除改变施加电压、液体流量和电极结构外,通过控制空气入口速度来影响喷雾液滴速度场,也可获得不同的静电喷雾效果.  相似文献   

7.
电场作用下流动聚焦的实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
司廷  田瑞军  李广滨  尹协振 《力学学报》2011,43(6):1030-1036
通过在流动聚焦的同轴液-气射流区域施加电场, 开展了电场力和气动力共同作用下锥形以及带电射流的不稳定性特性实验研究. 实验在精密设计的流动聚焦装置上完成, 分析了外部电压、气体压力降和液体流量等主要控制参数对流动聚焦过程的影响, 获得了锥形的振动模式和稳定模式及其之间的转换, 得到了射流的滴模式、轴对称模式、共存模式和非轴对称模式及其转换并定量分析了电场对射流尺寸参数的影响. 结果表明, 相比于单一的流动聚焦, 该方法能够增强锥形的稳定性, 促进液体射流雾化, 减小颗粒的直径, 因此在科技领域和工程实际中具有重要的应用价值.   相似文献   

8.
本文应用染色液和悬浮粒子显示方法,进一步实验研究轴对称层流射流的流动形态及其失稳机制。首次成功地在从一定口径的喷嘴流出的低速轴对称层流射流中观察到环形回流流动。给出了射流随速度演化及实验容器边界对其流动形态影响的显示照片,发现实际射流的轴对称波动及失稳过程正好对应射流在容器底部产生的环形旋涡的生长和破碎过程。本文认为由于实验空间有限尺度对流动的限制改变了原来射流的流动形态和流场空间的拓扑性质,射流与实际边界的相互作用对实际射流的失稳和转捩有重要的影响。  相似文献   

9.
电场作用下无黏聚焦射流的时间不稳定性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
李广滨  司廷  尹协振 《力学学报》2012,44(5):876-883
基于电场作用下的流动聚焦实验建立了简化的理论模型,开展了带电同轴液气射流的时间不稳定性分析.在无黏假设下,得到了扰动在时间域内发展演化的解析形式的色散关系,分析了主要控制参数对不稳定模态的影响.结果表明,只有轴对称扰动和第一类非轴对称扰动在时间域内是增长的;液气界面的表面张力对轴对称扰动有着双重影响而对非轴对称扰动起抑制作用;外层气体的流速以及密度的增加均能促进射流的失稳.这些结论与实验结果是定性一致的.结果也表明,在不考虑初始界面电荷密度时,单一的轴向电场能抑制射流的失稳.  相似文献   

10.
针对HPAM溶液在油藏孔隙中的复杂渗流特性问题,在内径为10$sim$350$mu$m微圆管中进行了部分水解聚丙烯酰胺(HPAM)溶液的流动实验. 实验结果表明:在本文实验条件下,HAPM溶液在管径尺度较小的微圆管内的流动规律明显偏离常规尺度下的非牛顿流体力学流动规律,其截面平均流速高于按照常规尺度流动推算出的结果,且管径越小,偏离程度越大,微尺度效应越强.  相似文献   

11.
在微流控器件内集成具有流动汇聚功能的几何结构以研究液--液系统中液滴的形成.相图显示液滴的大小为流量以及两种液体流量比的函数, 它包括两个区域,在一个区域中液滴大小和孔隙宽度接近,而在另一区域液滴大小则取决于``汇聚'后的细流直径,从而能形成远小于孔隙的液滴. 单分散和多分散乳状液均可以被生成.  相似文献   

12.
A method for calculating the density autocorrelation ′(x)′(x + r) for a homogeneous particle-fluid system in both physical and Fourier transform space has been developed. The density autocorrelation was related to two quantities, the Overlap function which is defined as the volume of intersection of two spheres as a function of the separation distance and the radial distribution function (RDF) of the particles. In dimensionless co-ordinates, the parameter that characterizes the density autocorrelation is the volume fraction of particles, 1, , or equivalently the dimensionless mean separation distance (normalized by the particle diameter), . For an isotropic randomly distributed system of particles, the density autocorrelation was observed to oscillate with the correlation distance r, with a wavelength that was proportional to λ. The Fourier transform of the autocorrelation likewise oscillated with the wavenumber k, however the effect of changes in the particle volume fraction was limited to the first peak only. Subsequent peaks were more closely associated with the Overlap function.

The results for the density autocorrelation were extended to a particle-fluid system which experienced an asymptotically large pressure gradient. This initially produced a uniform relative motion between the two fields. In this limit, other higher-order moments such as the Reynolds stress can be related to the density autocorrelation in a straightforward manner. Moreover the spectral shapes of all moments collapse onto the density autocorrelation spectrum in this limit. It was pointed out that the uniform relative motion will eventually become unstable because of hydrodynamic forces on the particles induced by the relative motion. This effect was estimated by introducing a mildly attractive force into the RDF. The results demonstrated that the induced hydrodynamic force promoted a shift in the density spectrum toward small k (large scale) indicating an alternative mechanism for growth in the integral length scale.  相似文献   


13.
    
流动聚焦是一种有效的微细射流产生方法,其原理可以描述为从毛细管流出的流体由另一种高速运动的流体驱动,经小孔聚焦后形成稳定的锥–射流结构,射流因不稳定性破碎成单分散的液滴.自从1998年流动聚焦被提出以来,陆续发展了单轴流动聚焦、电流动聚焦、复合流动聚焦和微流控流动聚焦等毛细流动技术.这些技术稳定、易操作、没有苛刻的环境条件的要求,能够制备单分散性较好的微纳米量级的液滴、颗粒和胶囊,在科学研究和实际应用中具有重要价值.流动聚焦涉及了多尺度、多界面和多场耦合的复杂流体力学问题,其中稳定的锥形是形成稳定射流的先决条件,过程参数是影响射流界面扰动发展的关键因素,而射流不稳定性分析是揭示射流破碎的最主要理论工具.该文回顾了近二十年来不同结构流动聚焦的研究进展,概述这些技术涉及的过程控制、流动模式、尺度律和不稳定性分析等关键力学问题,总结射流不稳定性的研究方法和已取得的成果,最后展望流动聚焦的研究方向和应用前景.  相似文献   

14.
受限管道中的气泡移动在诸如二氧化碳填埋与驱油、心脑血管和肺部气液输运等领域具有重要的应用, 液膜动力学以及气-液界面的形貌演变这些关键问题受到关注. 文章旨在通过基于光干涉的实验方法, 探究气泡在受限管道内移动过程中, 气体与管壁间的液膜相对厚度分布, 并分析其变化规律, 得到周期性变速移动气泡引起的液膜厚度特征. 通过液滴微流控的流动聚焦法, 分别在蛇形延长管道和平直短管道内形成了匀速移动的气泡和变速移动气泡. 利用绿色光在气-液和液-固界面产生的两道反射光之间干涉所形成的条纹, 通过相对光干涉强度(ROII)方法得到液膜厚度分布. 发现在与气泡固连的参考系中, 匀速移动气泡引起的液膜厚度呈稳态分布, 且得到了与以往的研究工作相符的、接近气泡尾部的马鞍形厚度分布, 证明了该实验方法的有效性. 在气泡进行周期性减速—加速—匀速的移动过程中, 气泡参考系内的液膜厚度呈现了随时间周期性变化的厚度分布. 气泡加速与减速均引起了界面形貌的整体变化, 且体现出了滞后性. 本研究发现了变速移动气泡特殊的液膜厚度演变规律, 将为针对受限管道内气泡的理论和计算研究提供实验观测的依据.  相似文献   

15.
The base flow downstream of slender cones in a stream of perfect gas at Mach numbers 8 and 10 and Reynolds numbers 104 and 105 is numerically investigated. The calculated heat fluxes to the rear face of the body are compared with experimental data. It is shown that the friction and heat transfer coefficients increase without bound as the corner point is approached from both the lateral surface and the rear face, the sign of the latter coefficient being dependent on the body surface temperature factor.  相似文献   

16.
Results of an experimental study of supersonic flow around truncated cones with cone half-angles of 20, 30, and 40°, performed at Mach numbers M = 2, 3, and 4 within the range of angles of attack up to 20°, are presented. A relationship is established between the emergence of an internal shock wave and the character of pressure distribution along the generatrix of the truncated cone. It is shown that the known boundaries of regimes obtained for axisymmetric flow around sharp and blunt cones can be used to predict flow regimes in the vertical plane of symmetry of the truncated cone at incidence.  相似文献   

17.
The laminar-turbulent transition is experimentally studied in boundary-layer flows on cones with a rectangular axisymmetric step in the base part of the cone and without the step. The experiments are performed in an A-1 two-step piston-driven gas-dynamic facility with adiabatic compression of the working gas with Mach numbers at the nozzle exit M = 12–14 and pressures in the settling chamber P0 = 60–600 MPa. These values of parameters allow obtaining Reynolds numbers per meter near the cone surface equal to Re 1e = (53–200) · 106 m −1. The transition occurs at Reynolds numbers Re tr = (2.3–5.7) · 106. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 3, pp. 76–83, May–June, 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号