首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
戴婷  戴宏亮  李军剑  贺其 《力学学报》2019,51(2):512-523
功能梯度材料(functionally graded materials, FGM)是组份含量按特定方向连续变化的非均匀复合材料,可有效解决传统复合材料组份之间结合能力弱和不同组份性能难以协调等问题,达到诸如缓和应力集中和优化应力分布等效果,使整体材料在保持细观结构完整性的同时充分发挥各组份材料的性能优势.由于制备技术等原因或出于特殊功能的需要,微孔或孔隙是各类型FGM中的常见缺陷.从细观结构上看,多孔FGM中的孔隙包含了单一组份内的材料孔隙和组份微粒间的结构间隙,这些孔隙将对FGM的力学性能,尤其是在湿热环境下的力学行为产生影响.本文考虑FGM中的两类细观孔隙(材料孔隙和结构孔隙),提出了令各类孔隙依赖于各自组份变化,再线性叠加得到的整体孔隙计算式.考虑组份材料和孔隙填充物(液相水和水蒸气)性质的温度相关性,建立了湿热相关FGM材料模型.针对厚度沿径向变化的旋转圆板结构,应用该FGM材料模型,推导了圆板的非线性稳态湿热控制方程及考虑湿热弹性本构的位移控制方程,采用微分求积法(differential quadrature method,DQM),获得了圆板的湿热场、位移场和应力分布.在数值算例中,利用退化模型的解析解对本文的数值计算方法进行了验证,继而通过改变各关键参数,讨论了两类孔隙率、梯度指数和圆板厚度变化对含孔隙FGM变厚度旋转圆板湿热力学响应的影响规律.   相似文献   

2.
Summary Steady thermal stresses in a plate made of a functionally gradient material (FGM) are analyzed theoretically and calculated numerically. An FGM plate composed of PSZ and Ti-6Al-4V is examined, and the temperature dependence of the material properties is considered. A local safety factor is used for evaluation of the FGM's strength. It is assumed that top and bottom surfaces of the plate are heated and kept at constant thermal boundary conditions. The pairs of the surface temperatures, for which the minimum local safety factor can be of more than one, are obtained as available temperature regions. The temperature dependence of the material properties diminishes, available temperature region as compared with that for an FGM plate without it. The available temperature region of the FGM plate is wider than that of the two-layered plate, especially for the surface temperatures which are high at the ceramic surface and low at the metal side. The influence of different mechanical boundary conditions is examined, and available temperature regions are found to be different, depending on the mechanical boundary conditions. The influence of the intermediate composition on the thermal stress reduction is also investigated in detail for the surface temperatures which are kept at 1300 K at the ceramic surface and 300K at the metal side. Appropriate intermediate composition of the FGM plate can yield the local safety factor of one or more for the four mechanical boundary conditions at once. For the two-layered plate there does not exist, however, any appropriate pair of metal and ceramic thicknesses which would yield the local safety factor of one or more for the four mechanical boundary conditions at once. The influence of the intermediate composition on the maximization of the minimum stress ratio depends on the mechanical boundary conditions. Finally, the optimal FGM plates are determined.  相似文献   

3.
This paper is to study the two-dimensional dynamic stress of a functionally graded material (FGM) plate with a circular hole under plane compressional waves at infinity. With using the method of piece-wise homogeneous layers, the dynamic stress distribution of the FGM plate having radial arbitrary material parameters is derived based on the complex variable method. As examples, numerical results are presented for the FGM plate having given radial shear modulus, density and Poisson’s ratio. It is found that the dynamic stress around the circular hole in the FGM plate can be effectively reduced by choosing the proper change ways of the radial material parameters for different frequency incident wave.  相似文献   

4.
Based on Mindlin's plate theory, free vibration analysis of moderately thick shear deformable annular functionally graded plate coupled with piezoelectric layers is presented in this paper. A consistent formulation that satisfies the Maxwell static electricity equation is presented so that the full coupling effect of the piezoelectric layer on the dynamic characteristics of the annular FGM plate can be estimated based on the free vibration results. The differential equations of motion are solved analytically for various boundary conditions of the plate through the transformation of variable method. The applicability of the proposed model is analyzed by studying the effect of varying the gradient index of FGM plate on the free vibration characteristics of the structure. For some specific cases, obtained results were cross checked with those existing literatures and furthermore, verified by those obtained from three-dimensional finite element (3D FE) analyses.  相似文献   

5.
In this study, the mechanical buckling and free vibration of thick rectangular plates made of functionally graded materials (FGMs) resting on elastic foundation subjected to in-plane loading is considered. The third order shear deformation theory (TSDT) is employed to derive the governing equations. It is assumed that the material properties of FGM plates vary smoothly by distribution of power law across the plate thickness. The elastic foundation is modeled by the Winkler and two-parameter Pasternak type of elastic foundation. Based on the spline finite strip method, the fundamental equations for functionally graded plates are obtained by discretizing the plate into some finite strips. The results are achieved by the minimization of the total potential energy and solving the corresponding eigenvalue problem. The governing equations are solved for FGM plates buckling analysis and free vibration, separately. In addition, numerical results for FGM plates with different boundary conditions have been verified by comparing to the analytical solutions in the literature. Furthermore, the effects of different values of the foundation stiffness parameters on the response of the FGM plates are determined and discussed.  相似文献   

6.
研究了温度场中非保守功能梯度材料(FGM)圆板的非线性力学行为。基于经典板理论,推导了受非保守力作用的FGM圆板在温度场中的控制微分方程。采用打靶法分析了由陶瓷二氧化锆和金属钛合金两相材料组成的非保守FGM圆板在均匀和非均匀升温场中的非线性力学行为。给出了不同均匀升温和非均匀升温场下,FGM圆板在非保守载荷作用下的平衡路径和平衡构形。分析并讨论了均匀和非均匀升温、材料梯度指数对非保守圆板过屈曲和弯曲行为的影响。结果表明:温度场中,非保守FGM圆板发生弯曲而纯陶瓷圆板会发生过屈曲行为;当梯度指数p=2,非保守载荷q=52时,均匀升温场中非保守圆板的变形大于非均匀升温场中非保守圆板的变形。  相似文献   

7.
Based on the classical nonlinear von Karman plate theory, axisymmetric large deflection bending of a functionally graded circular plate is investigated under mechanical, thermal and combined thermal–mechanical loadings, respectively, and axisymmetric thermal post-buckling behavior of a functionally graded circular plate is also investigated. The mechanical and thermal properties of functionally graded material (FGM) are assumed to vary continuously through the thickness of the plate, and obey a simple power law of the volume fraction of the constituents. Governing equations for the problem are derived, and then a shooting method is employed to numerically solve the equations. Effects of material constant n and boundary conditions on the temperature distribution, nonlinear bending, critical buckling temperature and thermal post-buckling behavior of the FGM plate are discussed in details.  相似文献   

8.
Free vibration of functionally graded(FG) annular sector plates embedded with two piezoelectric layers is studied with a generalized differential quadrature(GDQ)method. Based on the first-order shear deformation(FSD) plate theory and Hamilton's principle with parameters satisfying Maxwell's electrostatics equation in the piezoelectric layers, governing equations of motion are developed. Both open and closed circuit(shortly connected) boundary conditions on the piezoelectric surfaces, which are respective conditions for sensors and actuators, are accounted for. It is observed that the open circuit condition gives higher natural frequencies than a shortly connected condition. For the simulation of the potential electric function in piezoelectric layers, a sinusoidal function in the transverse direction is considered. It is assumed that properties of the FG material(FGM) change continuously through the thickness according to a power distribution law.The fast rate convergence and accuracy of the GDQ method with a small number of grid points are demonstrated through some numerical examples. With various combinations of free, clamped, and simply supported boundary conditions, the effects of the thicknesses of piezoelectric layers and host plate, power law index of FGMs, and plate geometrical parameters(e.g., angle and radii of annular sector) on the in-plane and out-of-plane natural frequencies for different FG and piezoelectric materials are also studied. Results can be used to predict the behaviors of FG and piezoelectric materials in mechanical systems.  相似文献   

9.
多孔功能梯度材料(FGM)构件的特性与孔隙率和孔隙分布形式有密切关系。本文基于经典板理论,考虑不同孔隙分布形式时修正的混合率模型,研究Winkler弹性地基上四边受压多孔FGM矩形板的自由振动与临界屈曲载荷特性。首先利用Hamilton原理和物理中面的定义推导Winkler弹性地基上四边受压多孔FGM矩形板自由振动的控制微分方程并进行无量纲化,然后应用微分变换法(DTM)对无量纲控制微分方程和边界条件进行变换,得到计算无量纲固有频率和临界屈曲载荷的代数特征方程。将问题退化为孔隙率为零时的FGM矩形板并与已有文献进行对比以验证其有效性。最后计算并分析了梯度指数、孔隙率、地基刚度系数、长宽比、四边受压载荷及边界条件对多孔FGM矩形板无量纲固有频率的影响以及各参数对无量纲临界屈曲载荷的影响。  相似文献   

10.
The problem of a transversely isotropic functionally graded material (FGM) plate welded with a circular inclusion is considered. The analysis starts with the generalized England-Spencer plate theory for transversely isotropic FGM plates, which expresses a three-dimensional (3D) general solution in terms of four analytic functions. Several analytical solutions are then obtained for an infinite FGM plate welded with a circular inclusion and subjected to the loads at infinity. Three different cases are considered, i.e., a rigid circular inclusion fixed in the space, a rigid circular inclusion rotating about the x-, y-, and z-axes, and an elastic circular inclusion with different material constants from the plate itself. The static responses of the plate and/or the inclusion are investigated through numerical examples.  相似文献   

11.
This paper presents analyses of the transient temperature fields in an infinite plate, an infinite solid cylinder and a solid sphere made of functionally graded materials (FGMs) under convective boundary conditions. The composition and the thermo-physical properties of the infinite FGM plate, the infinite FGM solid cylinder and the FGM solid sphere are of planar symmetric, axially symmetric and spherically symmetric distributions, respectively. The analytical formulae of the one-dimensional transient temperature fields for the three FGM solids are obtained respectively by using the separation-of-variables method and the variable substitution method. Numerical results reveal that the transient temperature fields of the FGM components exhibit similar shape effect to that of homogeneous components. The present work provides valuable basis for the investigation of the thermal shock resistance of FGMs with various shapes.  相似文献   

12.
This study attempts to derive the statistics of temperature and thermal stress in functionally graded material (FGM) plates exposed to random external temperatures. The thermomechanical properties of the FGM plates are assumed to vary arbitrarily only in the plate thickness direction. The external temperatures are expressed as random functions with respect to time. The transient temperature field in the FGM plate is determined by solving a nonhomogeneous heat conduction problem for a multilayered plate with linear nonhomogeneous thermal conductivity and different homogeneous heat capacity in each layer. The autocorrelations and power spectrum densities (PSDs) of temperature and thermal stress are derived analytically. These statistics for FGM plates composed of partially stabilised zirconia (PSZ) and austenitic stainless steel (SUS304) are computed under the condition that the fluctuation in the external temperature can be considered as white noise or a stationary Markov process.  相似文献   

13.
In this paper, we use the asymptotic perturbation method based on the Fourier expansion and the temporal rescaling to investigate the nonlinear oscillations and chaotic dynamics of a simply supported rectangular plate made of functionally graded materials (FGMs) subjected to a through-thickness temperature field together with parametric and external excitations. Material properties are assumed to be temperature-dependent. Based on the Reddy’s third-order plate theory, the governing equations of motion for the plate are derived using the Hamilton’s principle. The Galerkin procedure is employed to obtain a two-degree-of-freedom nonlinear system including the quadratic and cubic nonlinear terms. The resonant case considered here is 1:2 internal resonance, principal parametric resonance-1/2 subharmonic resonance. Based on the averaged equation in polar coordinate form, the stability of steady state solutions is analyzed. The phase portrait, waveform and Poincaré map are used to analyze the periodic and chaotic motions of the FGM rectangular plate. It is found that the FGM rectangular plate exhibits the chaotic motions under certain circumstances. It is seen that the nonlinear dynamic responses of the FGM rectangular plate are more sensitive to transverse excitation. The excitation force can be used as a controlling factor which can change the response of the FGM rectangular plate from periodic motion to the chaotic motion.  相似文献   

14.
This paper presents an analytical investigation on the buckling analysis of symmetric sandwich plates with functionally graded material (FGM) face sheets resting on an elastic foundation based on the first-order shear deformation plate theory (FSDT) and subjected to mechanical, thermal and thermo-mechanical loads. The material properties of FGM face sheets are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic material. An analytical approach is used to reduce the governing equations of stability and then solved using an analytical solution which is named as power series Frobenius method for symmetric sandwich plates with six different boundary conditions. A detailed numerical study is carried out to examine the influence of the plate aspect ratio, side-to-thickness ratio, loading type, sandwich plate type, volume fraction index, elastic foundation coefficients and boundary conditions on the buckling response of FGM sandwich plates. This has not been done before and serves to fill the gap of knowledge in this area.  相似文献   

15.
In this study, nonlocal elasticity theory in conjunction with Gurtin–Murdoch elasticity theory is employed to investigate biaxial buckling and free vibration behavior of nanoplate made of functionally graded material (FGM) and resting on a visco-Pasternak standard linear solid-type of the foundation. The material characteristics of simply supported FGM nanoplates are assumed to be varied continuously as a power law function of the plate thickness. Hamilton’s principle is implemented to derive the non-classical governing equations of motion and related boundary conditions, which analytically solved to obtain the explicit closed-form expression for complex natural frequencies and buckling loads. Finally, attention is focused on considering the influences of various parameters on variation of damped natural frequency and buckling load ratio such as nonlocal parameter, surface effects, geometric parameters, power law index and properties of visco-Pasternak foundation and it is clearly demonstrated that these factors highly affect on vibration and buckling behavior.  相似文献   

16.
李世荣 《力学学报》2022,54(6):1601-1612
功能梯度材料微板谐振器热弹性阻尼的建模和预测是此类新型谐振器热?弹耦合振动响应的新课题. 本文采用数学分析方法研究了四边简支功能梯度材料中厚度矩形微板的热弹性阻尼. 基于明德林中厚板理论和单向耦合热传导理论建立了材料性质沿着厚度连续变化的功能梯度微板热弹性自由振动控制微分方程. 在上下表面绝热边界条件下采用分层均匀化方法求解变系数热传导方程, 获得了用变形几何量表示的变温场的解析解. 从而将包含热弯曲内力的结构振动方程转化为只包含挠度振幅的偏微分方程. 然后,利用特征值问题在数学上的相似性,求得了四边简支条件下功能梯度材料明德林矩形微板的复频率解析解, 进而利用复频率法获得了反映谐振器热弹性阻尼水平的逆品质因子. 最后, 给出了材料性质沿板厚按幂函数变化的陶瓷?金属组分功能梯度矩形微板的热弹性阻尼数值结果. 定量地分析了横向剪切变形、材料梯度变化以及几何参数对热弹性阻尼的影响规律. 结果表明, 采用明德林板理论预测的热弹性阻尼值小于基尔霍夫板理论的预测结果, 而且两者的差别随着相对厚度的增大而变得显著.   相似文献   

17.
Piezoelectric-piezomagnetic functionally graded materials (FGM), with a gradual change of the mechanical and electromagnetic properties, have greatly applying promises. Based on Legendre orthogonal polynomial series expansion approach, a dynamic solution is presented for the propagation of circumferential harmonic waves in piezoelectric-piezomagnetic FGM cylindrical curved plates. The materials properties are assumed to vary in the direction of the thickness according to a known variation law. The dispersion curves of the piezoelectric-piezomagnetic FGM cylindrical curved plate and the corresponding non-piezoelectric and non-piezomagnetic cylindrical curved plates are calculated to show the influences of the piezoelectricity and piezomagnetism. Electric potential and magnetic potential distributions are also obtained to illustrate the different influences of the piezoelectricity and piezomagnetism. Finally, a cylindrical curved plate at a different ratio of radius to thickness is calculated to show the influence of the ratio on the piezoelectric effect and piezomagnetic effect.  相似文献   

18.
In this paper, the wave propagation and dynamic response of the rectangular FGM plates with completed clamped supports under impulse load are analyzed. The effective material properties of functionally graded materials (FGMs) for the plate are assumed to vary continuously through the plate thickness and be distributed according to a volume fraction power law along the plate thickness. Considering the effects of transverse shear deformation and rotary inertia, the governing equations of the wave propagation in the functionally graded plate are derived by using the Hamilton’s principle. A complete discussion of dispersion of the FGM plates is given. Using the dispersion relation and integral transforms, exact integral solutions for the FGM plates under impulse load are obtained. The influence of volume fraction distributions on wave propagation and dynamic response of the FGM plates is analyzed.  相似文献   

19.
The size effects on the shear buckling behaviors of skew nanoplates made of functionally graded materials (FGMs) are presented. The material properties are supposed to be changed uniformly from the ceramic phase to the metal one along the plate thickness. To estimate the associated effective material properties, various homogenization schemes including the Reuss model, the Voigt model, the Mori-Tanaka model, and the Hashin-Shtrikman bound model are used. The nonlocal elasticity theory together with the oblique coordinate system is applied to the higher-order shear deformation plate theory to develop a size-dependent plate model for the shear buckling analysis of FGM skew nanoplates. The Ritz method using Gram-Schmidt shape functions is used to solve the size-dependent problem. It is found that the significance of the nonlocality in the reduction of the shear buckling load of an FGM skew nanoplate increases for a higher value of the material property gradient index. Also, by increasing the skew angle, the critical shear buckling load of an FGM skew nanoplate enhances. This pattern becomes a bit less significant for a higher value of the material property gradient index. Furthermore, among various homogenization models, the Voigt and Reuss models in order estimate the overestimated and underestimated shear buckling loads, and the difference between them reduces by increasing the aspect ratio of the skew nanoplate.  相似文献   

20.
The size e?ects on the shear buckling behaviors of skew nanoplates made of functionally graded materials(FGMs) are presented. The material properties are supposed to be changed uniformly from the ceramic phase to the metal one along the plate thickness. To estimate the associated e?ective material properties, various homogenization schemes including the Reuss model, the Voigt model, the Mori-Tanaka model, and the Hashin-Shtrikman bound model are used. The nonlocal elasticity theory together with the oblique coordinate system is applied to the higher-order shear deformation plate theory to develop a size-dependent plate model for the shear buckling analysis of FGM skew nanoplates. The Ritz method using Gram-Schmidt shape functions is used to solve the size-dependent problem. It is found that the signi?cance of the nonlocality in the reduction of the shear buckling load of an FGM skew nanoplate increases for a higher value of the material property gradient index. Also, by increasing the skew angle, the critical shear buckling load of an FGM skew nanoplate enhances. This pattern becomes a bit less signi?cant for a higher value of the material property gradient index. Furthermore,among various homogenization models, the Voigt and Reuss models in order estimate the overestimated and underestimated shear buckling loads, and the di?erence between them reduces by increasing the aspect ratio of the skew nanoplate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号