首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The singular stress problem of a peripheral edge crack around a spherical cavity in a long circular cylinder under torsion is investigated. The problem is solved by using integral transforms and is reduced to the solution of two integral equations. The solution of these equations is obtained numerically by the method due to Erdogan, Gupta, and Cook, and the stress intensity factors, and crack opening displacements are displayed graphically.  相似文献   

2.
The problem of a Griffith crack of constant length propagating at a uniform speed in a plane non-homogeneous medium under uniform load is investigated. The equilibrium equations for the non-homogeneous medium are solved by using the Fourier transforms and then the problem is reduced to the solution of dual integral equations. Solving the dual integral equations we obtain the expression for the dynamic stress intensity factor at the edge of the crack. Finally the numerical results for the stress intensity factor are obtained which are displayed graphically to show the effect of the material non-homogeneity on the stress intensity factor.  相似文献   

3.
Summary This paper deals with the problem of determining the stress distribution in an elastic layer with a cylindrical cavity when the mixed boundary conditions are prescribed on the curved surface of the cylinder. The problem is simplified to that of finding the solution of dual integral equations arising from the mixed boundary conditions. These dual integral equations are subsequently reduced to a singular integral equation. The solution of this integral equation is obtained numerically, and the quantities of physical interest are calculated.  相似文献   

4.
We consider the problem on the motion of an isotropic elastic body occupying the half-space z ≥ 0 on whose boundary, along the half-plane x ≥ 0, the horizontal components of displacement are given, while the remaining part of the boundary is stress-free. We seek the solution by the method of integral Laplace transforms with respect to time t and Fourier transforms with respect to the coordinates x, y; the problem is reduced to a system of Wiener-Hopf equations, which can be solved by the methods of singular-integral equations and circulants. We invert the integral transforms and reduce the solution to the Smirnov-Sobolev form. We calculate the tangential stress intensity coefficients near the boundary z = 0, x = 0, |y| < ∞ of the half-plane. The circulant method for solving the Wiener-Hopf system was proposed in [1]. A static problem similar to that considered in the present paper was solved earlier. The Hilbert problem was reduced to a system of Fredholm integral equations in [2]. In the present paper, we solve the above problem by reducing the solution to quadratures and a quasiregular system of Fredholm integral equations. We give a numerical solution of the Fredholm equations and calculate the integrals for the tangential stress intensity coefficients.  相似文献   

5.
Closed form solution of quadruple integral equations involving inverse Mellin transforms has been obtained. The solution of quadruple integral equations is used in solving a two dimensional four-part mixed boundary value contact problem for an elastic wedge-shaped region as an application. Closed form expression for shear stress has been obtained. Finally, numerical results for shear stress are obtained and shown graphically.  相似文献   

6.
The anti-plane fracture problem for a finite crack in a one-dimensional hexagonal quasicrystal strip is analyzed. By using Fourier transforms, the mixed boundary value problems are reduced to the dual integral equations. The solution of the dual integral equations is then expressed by the complete elliptic integrals of the first and the third kinds. The expressions for stress, strains, displacements and field intensity factors of the phonon and phason fields near the crack tip are obtained exactly. The path-independent integral derived by a conservation law equals the energy release rate, which can be used as a fracture criterion for a mode III fracture problem.  相似文献   

7.
The problem of scattering of horizontal polarized shear waves by the two cracks in a uniform magnetostatic field is considered. The magnetic field is assumed to be parallel to the crack surfaces as well as perpendicular to the crack surfaces. The elastic medium under consideration is a homogeneous, isotropic and infinitely conducting one. The solution of the problem is reduced into a pair of triple integral equations having trigonometrical kernels. Using the finite Hilbert transform technique, solution of the pair of triple integral equations is obtained for the low frequencies. Finally, approximate formulae are derived for the stress intensity factors.  相似文献   

8.
This paper contains an analysis of the stress distribution in a long circular cylinder of isotropic elastic material with a circumferential edge crack when it is deformed by the application of a uniform shearing stress. The crack with its center on the axis of the cylinder lies on the plane perpendicular to that axis, and the cylindrical surface is stress-free. By making a suitable representation of the stress function for the problem, the problem is reduced to the solution of a pair of singular integral equations. This pair of singular integral equations is solved numerically, and the stress intensity factor due to the effect of the crack size is tabulated.  相似文献   

9.
This paper is concerned with the problem of bonded dissimilar, homogeneous media with a functionally graded interlayer, weakened by two offset interfacial cracks under antiplane deformation. Based on the Fourier integral transform method, formulation of the crack problem is reduced to a system of Cauchy-type singular integral equations. The mode III stress intensity factors are defined and evaluated in terms of the solution to the integral equations. Numerical results include the variations of stress intensity factors versus offset distance between the two cracks for various combinations of material and other geometric parameters of the bonded system, addressing the interaction of the two neighboring interfacial cracks spaced apart by the graded interlayer.  相似文献   

10.
The propagation of harmonic elastic wave in an infinite three-dimensional matrix containing an interacting low-rigidity disk-shaped inclusion and a crack. The problem is reduced to a system of boundary integral equations for functions that characterize jumps of displacements on the inclusion and crack. The unknown functions are determined by numerical solution of the system of boundary integral equations. For the symmetric problem, graphs are given of the dynamic stress intensity factors in the vicinity of the circular inclusion and the crack on the wavenumber for different distances between them and different compliance parameters of the inclusion.  相似文献   

11.
The influence of a pair of thin, elastic inclusions on the stress intensity at a crack tip is considered. The interaction problem is formulated as a set of coupled singular integral equations and the solution is obtained by the Gauss-Chebyshev numerical technique. The stress intensity is computed as a function of certain geometric and elastic parameters of the inclusions, and the toughening effect of these parameters is evaluated.  相似文献   

12.
This paper examines the problem of finding thermal stresses, caused by a symmetric indentation of a line crack by an inclusion in an infinite isotropic elastic heat conducting solid. The thermal and elastic problems are reduced to a system of triple integral equations. In each case the solution of the triple integral equations is obtained in a closed form. The expressions for the stress intensity factor at the edge of the line crack, the strain energy density function and the resultant pressure applied to the inclusion are obtained. The expression for the displacement component is also obtained. Finally the results for the physical quantities are displayed graphically.  相似文献   

13.
A novel procedure for solving three-dimensional problems for elastic layer weakened by through-thickness tunnel cracks has been developed and is presented in this paper. This procedure reduces the given boundary value problem to an infinite system of one-dimensional singular integral equations and is based on a system of homogeneous solutions for a layer. Integral representations of single- and double-layer potentials are used for metaharmonic and harmonic functions entering in the singular integral equations. These representations provide a continuous extendibility of the stress vector while allowing a jump in the displacement vector in the transition through the cut.Expanding the potential and biharmonic solutions in the Fourier series over the thickness coordinate yields the integral representations of the displacement vector and stress tensor. The problem of reducing a denumerable set of the integral equations of the given boundary value problem to one-to-one correspondence with the set of unknown densities appearing in the Fourier’s coefficient representations has been settled efficiently. Numerical investigations show a rapid convergence of the proposed reduction procedure as applied to the solution of the infinite system of one-dimensional integral equations. Numerical examples illustrate the proposed method and demonstrate its advantages.  相似文献   

14.
Using the fundamental solution of a single crack and the Fourier transform solution of an infinite strip, the tension problem of a clamped rectangular plate containing a central crack is reduced to solve a system of singular integral equations. Then, the normal stress on clamped side and the stress intensity factors of the central crack are carried out by means of Gauss-Jacobi integration formulas. The comparison of numerical results is shown in the “table of stress intensity factors”. This work was supported by the Science Fund of the Academy of Sciences of China.  相似文献   

15.
表面堆载作用下群桩负摩擦研究   总被引:4,自引:0,他引:4  
利用Biot固结理论和积分方程方法研究了表面有堆载的群桩负摩擦问题。根据基本解得出了群桩在圆形均布载荷作用下在时间域内的第二类Fredholm积分方程组。运用Laplace变换对上述积分方程组进行简化,求解上述积分方程组并进行相应的数值逆变换就可得出群桩在表面圆形均布载荷作用下的变形、轴力、孔压和桩侧摩阻力随时间的变化情况。  相似文献   

16.
The torsional problem of a finite elastic cylinder with a circumferential edge crack is studied in this paper. An efficient solution to the problem is achieved by using a new form of regularization applied to dual Dini series equations. Unlike the Srivastav approach, this regularization transforms dual equations into a Fredholm integral equation of the second kind given on the crack surface. Hence, exact asymptotic expansions of the Fredholm equation solution, the stress intensity factor and the torque are derived for the case of a shallow crack. The asymptotic expansions are certain power-logarithmic series of the normalized crack depth. Coefficients of these series are found from recurrent relations. Calculations for a shallow crack manifest that the stress intensity factor exhibits the rather weak dependence upon the cylinder length when the torque is fixed and the triple length is larger than the diameter.  相似文献   

17.
An internal crack located within a functionally graded material (FGM) strip bonded with two dissimilar half-planes and under an anti-plane load is considered. The crack is oriented in an arbitrary direction. The material properties of strip are assumed to vary exponentially in the thickness direction and two half-planes are assumed to be isotropic. Governing differential equations are derived and to reduce the difficulty of the problem dealing with solution of a system of singular integral equations Fourier integral transform is employed. Semi closed form solution for the stress distribution in the medium is obtained and mode III stress intensity factor (SIF), at the crack tip is calculated and its validity was verified. Finally, the effects of nonhomogeneous material parameter and crack orientation on the stress intensity factor are studied.  相似文献   

18.
The elastostatic plane problem of a layered composite containing an internal or edge crack perpendicular to its boundaries in its lower layer is considered. The layered composite consists of two elastic layers having different elastic constants and heights and rests on two simple supports. Solution of the problem is obtained by superposition of solutions for the following two problems: The layered composite subjected to a concentrated load through a rigid rectangular stamp without a crack and the layered composite having a crack whose surface is subjected to the opposite of the stress distribution obtained from the solution of the first problem. Using theory of Elasticity and Fourier transform technique, the problem is formulated in terms of two singular integral equations. Solving these integral equations numerically by making use of Gauss–Chebyshev integration, numerical results related to the normal stress σx(0,y), the stress-intensity factors, and the crack opening displacements are presented and shown graphically for various dimensionless quantities.  相似文献   

19.
We solve the problem of determining the stress state near a thin elastic inclusion in the form of a strip of finite width in an unbounded elastic body (matrix) with plane nonstationary waves propagating through it and with the forces exerted by the ambient medium taken into account. We assume that the matrix is in the plane strain state, and the smooth contact conditions are realized on both sides of the inclusion. The method for solving this problem consists in using the integral Laplace transform with respect to time and in representing the stress and displacement images in terms of the discontinuous solution of Lamé equations in the case of plane strain. As a result, the initial problem is reduced to a system of singular integral equations for the transforms of the unknown stress and displacement jumps. To invert the Laplace transform, we use a numerical method based on replacing the Mellin integral by the Fourier series. As a result, we obtain approximate formulas for calculating the stress intensity factors (SIF) for the inclusion, which are used to study the SIF time-dependence and its influence on the values of the inclusion rigidity. We also studied the possibility of considering the inclusions of higher rigidity as absolutely rigid inclusions.  相似文献   

20.
In this paper, the behavior of a Griffith crack at the interface of a layer boned to a half plane subjected to a uniform tension is investigated by use of the Schmidt method under the assumptions that the effect of the crack surface overlapping very near the crack tips is negligible and also there is a sufficiently large component of mode-I loading so that the crack essentially remains open. By use of the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations in which the unknown variables are the jumps of the displacements across the crack surfaces. To solve the dual integral equations, the jumps of the displacements across the crack surfaces are expanded in a series of Jacobi polynomials. Numerical examples are provided to show the effects of the crack length, the thickness of the material layer and the materials constants upon the stress intensity factor of the crack. As a special case in our solution, we also give the solution of the ordinary crack in homogeneous materials. Contrary to the previous solution of the interface crack problem, it is found that the stress singularities of the present interface crack solution are similar with ones for the ordinary crack in homogeneous materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号